Machine Learning Systems: Designs that scale
暫譯: 機器學習系統:可擴展的設計

Jeff Smith

  • 出版商: Manning
  • 出版日期: 2018-07-08
  • 售價: $1,575
  • 貴賓價: 9.5$1,496
  • 語言: 英文
  • 頁數: 224
  • 裝訂: Paperback
  • ISBN: 1617293334
  • ISBN-13: 9781617293337
  • 相關分類: Machine Learning
  • 相關翻譯: 機器學習系統 (簡中版)
  • 立即出貨 (庫存 < 4)

  • Machine Learning Systems: Designs that scale-preview-1
  • Machine Learning Systems: Designs that scale-preview-2
  • Machine Learning Systems: Designs that scale-preview-3
  • Machine Learning Systems: Designs that scale-preview-4
  • Machine Learning Systems: Designs that scale-preview-5
  • Machine Learning Systems: Designs that scale-preview-6
  • Machine Learning Systems: Designs that scale-preview-7
  • Machine Learning Systems: Designs that scale-preview-8
  • Machine Learning Systems: Designs that scale-preview-9
  • Machine Learning Systems: Designs that scale-preview-10
  • Machine Learning Systems: Designs that scale-preview-11
  • Machine Learning Systems: Designs that scale-preview-12
  • Machine Learning Systems: Designs that scale-preview-13
  • Machine Learning Systems: Designs that scale-preview-14
  • Machine Learning Systems: Designs that scale-preview-15
  • Machine Learning Systems: Designs that scale-preview-16
  • Machine Learning Systems: Designs that scale-preview-17
  • Machine Learning Systems: Designs that scale-preview-18
  • Machine Learning Systems: Designs that scale-preview-19
  • Machine Learning Systems: Designs that scale-preview-20
  • Machine Learning Systems: Designs that scale-preview-21
Machine Learning Systems: Designs that scale-preview-1

買這商品的人也買了...

相關主題

商品描述

Summary

Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app.

Foreword by Sean Owen, Director of Data Science, Cloudera

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

If you're building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.

About the Book

Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well.

What's Inside

 

  • Working with Spark, MLlib, and Akka
  • Reactive design patterns
  • Monitoring and maintaining a large-scale system
  • Futures, actors, and supervision

About the Reader

Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.

About the Author

Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.

Table of Contents

 

PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING

PART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM

PART 3 - OPERATING A MACHINE LEARNING SYSTEM

  1. Learning reactive machine learning
  2. Using reactive tools
  3. Collecting data
  4. Generating features
  5. Learning models
  6. Evaluating models
  7. Publishing models
  8. Responding
  9. Delivering
  10. Evolving intelligence

商品描述(中文翻譯)

**摘要**

*《機器學習系統:可擴展的設計》* 是一本充滿範例的指南,教你如何在機器學習系統中實施反應式設計解決方案,使其可靠性與精心構建的網頁應用程式相當。

前言由 Sean Owen,Cloudera 數據科學總監撰寫。

購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF、Kindle 和 ePub 格式電子書。

**關於技術**

如果你正在構建小規模使用的機器學習模型,那麼你不需要這本書。但如果你是一名開發者,正在構建需要快速響應時間、可靠性和良好用戶體驗的生產級 ML 應用程式,那麼這本書就是為你而寫。它彙集了機器學習系統的原則和實踐,這些系統運行和維護起來顯著更容易,並且對用戶來說更可靠。

**關於本書**

*《機器學習系統:可擴展的設計》* 教你設計和實施生產就緒的 ML 系統。你將學習反應式設計的原則,並在構建使用 Spark 的管道、創建高可擴展性的服務(使用 Akka)以及在大量數據集上使用強大的機器學習庫(如 MLib)時應用這些原則。範例使用 Scala 語言,但相同的概念和工具也適用於 Java。

**內容概覽**

- 使用 Spark、MLlib 和 Akka
- 反應式設計模式
- 監控和維護大規模系統
- Futures、actors 和監督

**關於讀者**

讀者需要具備中級的 Java 或 Scala 技能。假設讀者沒有先前的機器學習經驗。

**關於作者**

**Jeff Smith** 構建強大的機器學習系統。在過去十年中,他一直在紐約、舊金山和香港的各個團隊中,致力於構建數據科學應用程式、團隊和公司。他在部落格(https://medium.com/@jeffksmithjr)、推特(@jeffksmithjr)和演講(www.jeffsmith.tech/speaking)中討論構建現實世界機器學習系統的各個方面。

**目錄**

**第一部分 - 反應式機器學習的基本原則**

**第二部分 - 構建反應式機器學習系統**

**第三部分 - 操作機器學習系統**

1. 學習反應式機器學習
2. 使用反應式工具
3. 收集數據
4. 生成特徵
5. 學習模型
6. 評估模型
7. 發佈模型
8. 響應
9. 交付
10. 演進智能