Distributed Machine Learning Patterns (Paperback)
暫譯: 分散式機器學習模式 (平裝本)
Tang, Yuan
- 出版商: Manning
- 出版日期: 2024-01-02
- 售價: $2,160
- 貴賓價: 9.5 折 $2,052
- 語言: 英文
- 頁數: 248
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1617299022
- ISBN-13: 9781617299025
-
相關分類:
Machine Learning
-
相關翻譯:
分佈式機器學習模式 (簡中版)
立即出貨
買這商品的人也買了...
-
$2,460$2,337 -
$2,540$2,413 -
$480$379 -
$580$458 -
$580$458 -
$580$493 -
$780$616 -
$680$537 -
$580$458 -
$580$458 -
$1,700$1,700 -
$4,620$4,389 -
$800$632 -
$1,750,800$1,663,260 -
$500$425 -
$857QEMU/KVM 源碼解析與應用
-
$2,077Kubeflow Operations Guide: Managing Cloud and On-Premise Deployment
-
$680$537 -
$980$774 -
$2,450$2,328 -
$1,760$1,672 -
$780$663 -
$1,280$1,011 -
$880$695 -
$750$375
相關主題
商品描述
Practical patterns for scaling machine learning from your laptop to a distributed cluster.
Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. This book reveals best practice techniques and insider tips for tackling the challenges of scaling machine learning systems.
In Distributed Machine Learning Patterns you will learn how to:
- Apply distributed systems patterns to build scalable and reliable machine learning projects
- Build ML pipelines with data ingestion, distributed training, model serving, and more
- Automate ML tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
- Make trade-offs between different patterns and approaches
- Manage and monitor machine learning workloads at scale
Inside Distributed Machine Learning Patterns you'll learn to apply established distributed systems patterns to machine learning projects--plus explore cutting-edge new patterns created specifically for machine learning. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Hands-on projects and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Deploying a machine learning application on a modern distributed system puts the spotlight on reliability, performance, security, and other operational concerns. In this in-depth guide, Yuan Tang, project lead of Argo and Kubeflow, shares patterns, examples, and hard-won insights on taking an ML model from a single device to a distributed cluster.
About the book
Distributed Machine Learning Patterns provides dozens of techniques for designing and deploying distributed machine learning systems. In it, you'll learn patterns for distributed model training, managing unexpected failures, and dynamic model serving. You'll appreciate the practical examples that accompany each pattern along with a full-scale project that implements distributed model training and inference with autoscaling on Kubernetes.
What's inside
- Data ingestion, distributed training, model serving, and more
- Automating Kubernetes and TensorFlow with Kubeflow and Argo Workflows
- Manage and monitor workloads at scale
About the reader
For data analysts and engineers familiar with the basics of machine learning, Bash, Python, and Docker.
About the author
Yuan Tang is a project lead of Argo and Kubeflow, maintainer of TensorFlow and XGBoost, and author of numerous open source projects.
Table of Contents
PART 1 BASIC CONCEPTS AND BACKGROUND
1 Introduction to distributed machine learning systems
PART 2 PATTERNS OF DISTRIBUTED MACHINE LEARNING SYSTEMS
2 Data ingestion patterns
3 Distributed training patterns
4 Model serving patterns
5 Workflow patterns
6 Operation patterns
PART 3 BUILDING A DISTRIBUTED MACHINE LEARNING WORKFLOW
7 Project overview and system architecture
8 Overview of relevant technologies
9 A complete implementation
商品描述(中文翻譯)
**從筆記型電腦擴展到分散式叢集的機器學習實用模式**
分散式機器學習系統使開發人員能夠在多個叢集上處理極大的數據集,利用自動化工具,並受益於硬體加速。本書揭示了應對擴展機器學習系統挑戰的最佳實踐技術和內部提示。
在《分散式機器學習模式》中,您將學習如何:
- 應用分散式系統模式來構建可擴展且可靠的機器學習專案
- 建立包含數據攝取、分散式訓練、模型服務等的機器學習管道
- 使用 Kubernetes、TensorFlow、Kubeflow 和 Argo Workflows 自動化機器學習任務
- 在不同模式和方法之間做出取捨
- 大規模管理和監控機器學習工作負載
在《分散式機器學習模式》中,您將學會如何將已建立的分散式系統模式應用於機器學習專案,並探索專門為機器學習創建的前沿新模式。本書根植於現實世界,展示了如何使用基於 TensorFlow、Kubernetes、Kubeflow 和 Argo Workflows 的範例來應用這些模式。實作專案和清晰、實用的 DevOps 技術讓您輕鬆啟動、管理和監控雲原生的分散式機器學習管道。
購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF、Kindle 和 ePub 格式電子書。
**關於技術**
在現代分散式系統上部署機器學習應用程式,將焦點放在可靠性、性能、安全性和其他操作性問題上。在這本深入的指南中,Argo 和 Kubeflow 的專案負責人 Yuan Tang 分享了將機器學習模型從單一設備轉移到分散式叢集的模式、範例和艱辛獲得的見解。
**關於本書**
《分散式機器學習模式》提供了數十種設計和部署分散式機器學習系統的技術。在本書中,您將學習分散式模型訓練、管理意外故障和動態模型服務的模式。您將欣賞每個模式所附的實用範例,以及一個完整的專案,該專案在 Kubernetes 上實現了分散式模型訓練和推斷,並具備自動擴展功能。
**內容概覽**
- 數據攝取、分散式訓練、模型服務等
- 使用 Kubeflow 和 Argo Workflows 自動化 Kubernetes 和 TensorFlow
- 大規模管理和監控工作負載
**關於讀者**
適合熟悉機器學習基礎、Bash、Python 和 Docker 的數據分析師和工程師。
**關於作者**
**Yuan Tang** 是 Argo 和 Kubeflow 的專案負責人,TensorFlow 和 XGBoost 的維護者,以及多個開源專案的作者。
**目錄**
第一部分 基本概念與背景
1 分散式機器學習系統介紹
第二部分 分散式機器學習系統的模式
2 數據攝取模式
3 分散式訓練模式
4 模型服務模式
5 工作流程模式
6 操作模式
第三部分 建立分散式機器學習工作流程
7 專案概述與系統架構
8 相關技術概述
9 完整實作
作者簡介
Yuan Tang is currently a founding engineer at Akuity. Previously he was a senior software engineer at Alibaba Group, building AI infrastructure and AutoML platforms on Kubernetes. Yuan is co-chair of Kubeflow, maintainer of Argo, TensorFlow, XGBoost, and Apache MXNet. He is the co-author of TensorFlow in Practice and author of the TensorFlow implementation of Dive into Deep Learning.
作者簡介(中文翻譯)
Yuan Tang 目前是 Akuity 的創始工程師。之前,他是阿里巴巴集團的高級軟體工程師,負責在 Kubernetes 上構建 AI 基礎設施和 AutoML 平台。Yuan 是 Kubeflow 的共同主席,Argo、TensorFlow、XGBoost 和 Apache MXNet 的維護者。他是《TensorFlow in Practice》的共同作者,也是《Dive into Deep Learning》中 TensorFlow 實作的作者。