Veracity of Data: From Truth Discovery Computation Algorithms to Models of Misinformation Dynamics (Synthesis Lectures on Data Management)

Laure Berti-Équille, Javier Borge-Holthoefer

  • 出版商: Morgan & Claypool
  • 出版日期: 2015-12-01
  • 售價: $1,740
  • 貴賓價: 9.5$1,653
  • 語言: 英文
  • 頁數: 156
  • 裝訂: Paperback
  • ISBN: 1627057714
  • ISBN-13: 9781627057714
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In the Web, a massive amount of user-generated contents are available through various channels (e.g., texts, tweets, Web tables, databases, multimedia-sharing platforms, etc.). Conflicting information, rumors, erroneous and fake contents can be easily spread across multiple sources, making it hard to distinguish between what is true and what is not. This monograph gives an overview of fundamental issues and recent contributions for ascertaining the veracity of data in the era of Big Data. The text is organized into six chapters, focusing on structured data extracted from texts. Chapter One introduces the problem of ascertaining the veracity of data in a multi-source and evolving context. Issues related to information extraction are presented in chapter Two. It is followed by practical techniques for evaluating data source reputation and authoritativeness in Chapter Three, including a review of the main models and Bayesian approaches of trust management. Current truth discovery computation algorithms are presented in details in Chapter Four. The theoretical foundations and various approaches for modeling diffusion phenomenon of misinformation spreading in networked systems is studied in Chapter Five. Finally, truth discovery computation from extracted data in a dynamic context of misinformation propagation raises interesting challenges that are explored in Chapter Six. Supplementary material including source codes, datasets, and slides are offered online. This text is intended for a seminar course at the graduate level. It is also to serve as a useful resource for researchers and practitioners who are interested in the study of fact-checking, truth discovery or rumor spreading.

商品描述(中文翻譯)

在網路上,透過各種渠道(例如文本、推文、網頁表格、數據庫、多媒體分享平台等)可獲得大量用戶生成的內容。相互矛盾的信息、謠言、錯誤和假內容可以輕易地在多個來源中傳播,使得區分真實與否變得困難。本專著概述了在大數據時代確定數據真實性的基本問題和近期貢獻。文本分為六個章節,重點關注從文本中提取的結構化數據。第一章介紹了在多來源和不斷演變的背景下確定數據真實性問題。第二章介紹了與信息提取相關的問題。接下來的第三章提供了評估數據來源聲譽和權威性的實用技術,包括對信任管理的主要模型和貝葉斯方法的回顧。第四章詳細介紹了當前的真相發現計算算法。第五章研究了在網絡系統中虛假信息擴散現象的理論基礎和各種建模方法。最後,第六章探討了在虛假信息傳播的動態背景下,從提取數據中進行真相發現計算所帶來的有趣挑戰。補充材料包括源代碼、數據集和幻燈片,均可在線獲得。本文本旨在用於研究生層級的研討課程,同時也為對事實查核、真相發現或謠言傳播研究感興趣的研究人員和實務工作者提供有用的資源。