Word Association Thematic Analysis: A Social Media Text Exploration Strategy
暫譯: 詞彙聯想主題分析:社交媒體文本探索策略

Thelwall, Mike

  • 出版商: Morgan & Claypool
  • 出版日期: 2021-02-02
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 111
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1636390676
  • ISBN-13: 9781636390673
  • 相關分類: Word
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Many research projects involve analyzing sets of texts from the social web or elsewhere to get insights into issues, opinions, interests, news discussions, or communication styles. For example, many studies have investigated reactions to Covid-19 social distancing restrictions, conspiracy theories, and anti-vaccine sentiment on social media. This book describes word association thematic analysis, a mixed methods strategy to identify themes within a collection of social web or other texts. It identifies these themes in the differences between subsets of the texts, including female vs. male vs. nonbinary, older vs. newer, country A vs. country B, positive vs. negative sentiment, high scoring vs. low scoring, or subtopic A vs. subtopic B. It can also be used to identify the differences between a topic-focused collection of texts and a reference collection. The method starts by automatically finding words that are statistically significantly more common in one subset than another, then identifies the context of these words and groups them into themes. It is supported by the free Windows-based software Mozdeh for data collection or importing and for the quantitative analysis stages. This book explains the word association thematic analysis method, with examples, and gives practical advice for using it. It is primarily intended for social media researchers and students, although the method is applicable to any collection of short texts.

商品描述(中文翻譯)

許多研究專案涉及分析來自社交網路或其他地方的文本集,以獲取對問題、意見、興趣、新聞討論或溝通風格的見解。例如,許多研究調查了對 Covid-19 社交距離限制、陰謀論和反疫苗情緒在社交媒體上的反應。本書描述了詞彙聯想主題分析(word association thematic analysis),這是一種混合方法策略,用於識別社交網路或其他文本集合中的主題。它通過比較文本的子集之間的差異來識別這些主題,包括女性 vs. 男性 vs. 非二元性別、年長 vs. 年輕、國家 A vs. 國家 B、正面 vs. 負面情緒、高分 vs. 低分,或子主題 A vs. 子主題 B。它還可以用來識別以主題為中心的文本集合與參考集合之間的差異。該方法首先自動找到在一個子集中統計上顯著更常見的詞彙,然後識別這些詞彙的上下文並將其分組為主題。該方法由免費的 Windows 基礎軟體 Mozdeh 支持,用於數據收集或導入以及定量分析階段。本書解釋了詞彙聯想主題分析方法,並提供了示例和實用建議,主要針對社交媒體研究者和學生,儘管該方法適用於任何短文本集合。