The Navier-Stokes Problem
暫譯: 納維-斯托克斯問題

Ramm, Alexander G.

  • 出版商: Morgan & Claypool
  • 出版日期: 2021-04-06
  • 售價: $1,450
  • 貴賓價: 9.5$1,378
  • 語言: 英文
  • 頁數: 77
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1636391222
  • ISBN-13: 9781636391229
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ] (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution 𝑣(𝑥, 𝑡) to the NSP exists for all 𝑡 >= 0 and 𝑣(𝑥, 𝑡) = 0).

It is shown that if the initial data 𝑣0(𝑥) ≢ 0, 𝑓(𝑥,𝑡) = 0 and the solution to the NSP exists for all 𝑡 ϵ ℝ+, then 𝑣0(𝑥): = 𝑣(𝑥, 0) = 0.

This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 𝑊21(ℝ3) × C(ℝ+) is proved, 𝑊21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞).

Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.

商品描述(中文翻譯)

這本書的主要結果是對Navier–Stokes問題(NSP)矛盾性質的證明。證明了NSP在物理上是錯誤的,並且NSP的解在實數集ℝ上不存在(除了初始速度和外力均為零的情況;在這種情況下,NSP的解u(t, x)對所有t >= 0存在,且u(t, x) = 0)。

顯示如果初始數據u₀(x) ≡ 0,且u(t, x) = 0,並且NSP的解對所有t ∈ ℝ⁺存在,那麼u₀(x) := u(x, 0) = 0。

這個悖論證明了NSP在物理上是不正確的,並且在數學上通常是不可解的。證明了NSP在空間L²¹(ℝ³) × C(ℝ⁺)中的解的唯一性,其中L²¹(ℝ³)是Sobolev空間,ℝ⁺ = [0, ∞)。

發展了具有超奇異核的積分方程和不等式的理論。NSP被簡化為一個具有超奇異核的積分不等式。