Deep Learning for Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future Prospects
暫譯: 自動駕駛車輛控制的深度學習:演算法、最新技術與未來展望

Kuutti, Sampo, Fallah, Saber, Bowden, Richard

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-08-08
  • 售價: $1,610
  • 貴賓價: 9.5$1,530
  • 語言: 英文
  • 頁數: 80
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1681736071
  • ISBN-13: 9781681736075
  • 相關分類: DeepLearningAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety.

Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest.

In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.

商品描述(中文翻譯)

下一代自動駕駛車輛將在交通流量、燃油效率和車輛安全性方面提供重大改善。

目前有幾個挑戰阻礙自動駕駛車輛的部署,其中一個方面是穩健且可適應的車輛控制。設計一個能夠在所有駕駛場景中提供足夠性能的自動駕駛車輛控制器是具有挑戰性的,因為環境極其複雜,且無法在部署後測試系統可能遇到的各種場景。然而,深度學習方法在解決複雜和非線性控制問題方面顯示出極大的潛力,不僅能提供優異的性能,還能將先前學習的規則推廣到新場景。因此,使用深度神經網絡進行車輛控制引起了廣泛的關注。

在本書中,我們介紹相關的深度學習技術,討論應用於自動駕駛車輛控制的最新算法,識別現有方法的優勢和限制,探討該領域的研究挑戰,並提供對這個快速發展領域未來趨勢的見解。