Federated Learning
暫譯: 聯邦學習

Yang, Qiang, Liu, Yang, Cheng, Yong

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-12-19
  • 售價: $3,500
  • 貴賓價: 9.5$3,325
  • 語言: 英文
  • 頁數: 207
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681736993
  • ISBN-13: 9781681736990
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private?

Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

商品描述(中文翻譯)

如何在保持所有本地訓練數據私密的情況下,允許多個數據擁有者協作訓練和使用共享的預測模型?

傳統的機器學習方法需要將所有數據集中在一個位置,通常是數據中心,這可能會違反用戶隱私和數據保密的法律。如今,世界許多地方要求科技公司根據用戶隱私法謹慎處理用戶數據。歐盟的一般數據保護條例(GDPR)就是一個典型的例子。在本書中,我們描述了聯邦機器學習如何通過結合分散式機器學習、密碼學和安全性,以及基於經濟原則和博弈論的激勵機制設計來解決這一問題。我們解釋了不同類型的隱私保護機器學習解決方案及其技術背景,並突出了幾個具有代表性的實際應用案例。我們展示了聯邦學習如何成為下一代機器學習的基礎,以滿足負責任的人工智慧開發和應用的技術和社會需求。