Graph Representation Learning (Paperback)
暫譯: 圖形表示學習 (平裝本)
Hamilton, William L.
- 出版商: Morgan & Claypool
- 出版日期: 2020-09-16
- 售價: $2,230
- 貴賓價: 9.5 折 $2,119
- 語言: 英文
- 頁數: 160
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1681739631
- ISBN-13: 9781681739632
-
相關分類:
Machine Learning
-
相關翻譯:
圖表示學習 (簡中版)
買這商品的人也買了...
-
$790$774 -
$1,200$1,140 -
$580$452 -
$550$550 -
$1,500$1,470 -
$590$460 -
$450$383 -
$1,750$1,715 -
$690$545 -
$1,760$1,672 -
$3,180$3,021 -
$2,040$1,938 -
$1,929Linux Command Line and Shell Scripting Bible, 4/e (Paperback)
-
$412UVM 實戰
-
$419$398 -
$556圖表示學習
-
$1,980$1,881 -
$2,006Python and R for the Modern Data Scientist: The Best of Both Worlds
-
$588$559 -
$1,870$1,777 -
$301機器學習的算法分析和實踐
-
$1,840$1,748 -
$680$537 -
$680$530 -
$1,580$1,501
相關主題
商品描述
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.
This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs--a nascent but quickly growing subset of graph representation learning.
商品描述(中文翻譯)
圖形結構數據在自然科學和社會科學中無處不在,從電信網絡到量子化學。 在深度學習架構中建立關聯性歸納偏見對於創建能夠從這類數據中學習、推理和概括的系統至關重要。近年來,圖形表示學習的研究激增,包括深度圖嵌入技術、卷積神經網絡對圖形結構數據的推廣,以及受信念傳播啟發的神經消息傳遞方法。這些在圖形表示學習方面的進展已在許多領域中取得了新的最先進成果,包括化學合成、3D視覺、推薦系統、問答系統和社交網絡分析。
本書提供了圖形表示學習的綜合概述。它首先討論了圖形表示學習的目標以及圖論和網絡分析中的關鍵方法論基礎。接下來,本書介紹並回顧了學習節點嵌入的方法,包括基於隨機漫步的方法及其在知識圖中的應用。然後,它提供了對於高度成功的圖神經網絡(GNN)形式的技術綜合和介紹,該形式已成為使用圖形數據進行深度學習的主導且快速增長的範式。本書最後綜合了圖形的深度生成模型的最新進展——這是一個新興但快速增長的圖形表示學習子集。