Learning Hadoop 2

Garry Turkington, Gabriele Modena

  • 出版商: Packt Publishing
  • 出版日期: 2015-01-31
  • 售價: $1,750
  • 貴賓價: 9.5$1,663
  • 語言: 英文
  • 頁數: 316
  • 裝訂: Paperback
  • ISBN: 1783285516
  • ISBN-13: 9781783285518
  • 相關分類: Hadoop
  • 下單後立即進貨 (約3~4週)


Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2

About This Book

  • Construct state-of-the-art applications using higher-level interfaces and tools beyond the traditional MapReduce approach
  • Use the unique features of Hadoop 2 to model and analyze Twitter's global stream of user generated data
  • Develop a prototype on a local cluster and deploy to the cloud (Amazon Web Services)

Who This Book Is For

If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus.

What You Will Learn

  • Write distributed applications using the MapReduce framework
  • Go beyond MapReduce and process data in real time with Samza and iteratively with Spark
  • Familiarize yourself with data mining approaches that work with very large datasets
  • Prototype applications on a VM and deploy them to a local cluster or to a cloud infrastructure (Amazon Web Services)
  • Conduct batch and real time data analysis using SQL-like tools
  • Build data processing flows using Apache Pig and see how it enables the easy incorporation of custom functionality
  • Define and orchestrate complex workflows and pipelines with Apache Oozie
  • Manage your data lifecycle and changes over time

In Detail

This book introduces you to the world of building data-processing applications with the wide variety of tools supported by Hadoop 2. Starting with the core components of the framework―HDFS and YARN―this book will guide you through how to build applications using a variety of approaches.

You will learn how YARN completely changes the relationship between MapReduce and Hadoop and allows the latter to support more varied processing approaches and a broader array of applications. These include real-time processing with Apache Samza and iterative computation with Apache Spark. Next up, we discuss Apache Pig and the dataflow data model it provides. You will discover how to use Pig to analyze a Twitter dataset.

With this book, you will be able to make your life easier by using tools such as Apache Hive, Apache Oozie, Hadoop Streaming, Apache Crunch, and Kite SDK. The last part of this book discusses the likely future direction of major Hadoop components and how to get involved with the Hadoop community.