Mastering Social Media Mining with R
暫譯: 精通使用 R 進行社交媒體挖掘
Sharan Kumar Ravindran, Vikram Garg
- 出版商: Packt Publishing
- 出版日期: 2015-09-28
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 248
- 裝訂: Paperback
- ISBN: 1784396311
- ISBN-13: 9781784396312
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,480$1,406 -
$352人人都是資料分析師:Tableau 應用實戰
-
$505Spark 全棧數據分析
-
$520$406 -
$327Spark Streaming 實時流式大數據處理實戰
-
$280特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$780$616
相關主題
商品描述
Extract valuable data from your social media sites and make better business decisions using R
About This Book
- Explore the social media APIs in R to capture data and tame it
- Employ the machine learning capabilities of R to gain optimal business value
- A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data
Who This Book Is For
If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful.
What You Will Learn
- Access APIs of popular social media sites and extract data
- Perform sentiment analysis and identify trending topics
- Measure CTR performance for social media campaigns
- Implement exploratory data analysis and correlation analysis
- Build a logistic regression model to detect spam messages
- Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations
- Develop recommendation systems using Collaborative Filtering and the Apriori algorithm
In Detail
With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data.
This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming.
With this handy guide, you will be ready to embark on your journey as an independent social media analyst.
Style and approach
This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.
商品描述(中文翻譯)
提取社交媒體網站的有價值數據,並使用 R 做出更好的商業決策
關於本書
- 探索 R 中的社交媒體 API,以捕獲數據並加以整理
- 利用 R 的機器學習能力獲得最佳商業價值
- 一本實用指南,提供真實世界的範例,幫助您利用社交媒體數據帶來的廣泛機會
本書適合誰
如果您對 R 的庫有基本了解,並且熟悉不同的機器學習技術,那麼這本書適合您。對於有數據分析經驗並對挖掘社交媒體數據感興趣的讀者,本書將會非常有用。
您將學到什麼
- 訪問流行社交媒體網站的 API 並提取數據
- 執行情感分析並識別熱門話題
- 測量社交媒體活動的點擊率 (CTR) 表現
- 實施探索性數據分析和相關性分析
- 建立邏輯回歸模型以檢測垃圾郵件
- 使用 K-means 演算法構建圖片聚類,並識別受歡迎的人物和目的地
- 使用協同過濾和 Apriori 演算法開發推薦系統
詳細內容
隨著網路用戶數量的增加,生成的內容也大幅增加,這使得深入了解社交媒體數據這個未開發的金礦變得必要。對於計算統計學而言,R 在提供現成的數據提取和轉換套件方面相較於其他語言具有優勢,使得執行 ETL 任務變得更加容易。此外,其數據可視化套件幫助用戶更好地理解基礎數據分佈,而其一系列的「標準」統計套件則簡化了數據分析。
本書將教您如何通過應用機器學習技術於社交媒體數據來解決強大的商業案例。您將了解社交媒體領域的重要和最新發展,以及一些進階主題,如開放授權 (OAuth)。通過實際範例,您將使用各種社交媒體網站的 API(如 Twitter、Facebook、Instagram、GitHub、Foursquare、LinkedIn、Blogger 等)從 R 中訪問數據。我們將為您提供有關使用 R 編程實現各種用例的詳細解釋。
有了這本實用指南,您將準備好開始您的獨立社交媒體分析師之旅。
風格與方法
這本易於跟隨的指南充滿了實用的逐步範例,將使您能夠將現實世界的社交媒體數據轉化為有用的實用信息。