R Data Analysis Projects: Build end to end analytics systems to get deeper insights from your data

Gopi Subramanian

  • 出版商: Packt Publishing
  • 出版日期: 2017-11-17
  • 售價: $2,170
  • 貴賓價: 9.5$2,062
  • 語言: 英文
  • 頁數: 366
  • 裝訂: Paperback
  • ISBN: 1788621875
  • ISBN-13: 9781788621878
  • 相關分類: R 語言Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Key Features

  • A handy guide to take your understanding of data analysis with R to the next level
  • Real-world projects that focus on problems in finance, network analysis, social media, and more
  • From data manipulation to analysis to visualization in R, this book will teach you everything you need to know about building end-to-end data analysis pipelines using R

Book Description

R offers a large variety of packages and libraries for fast and accurate data analysis and visualization. As a result, it’s one of the most popularly used languages by data scientists and analysts, or anyone who wants to perform data analysis. This book will demonstrate how you can put to use your existing knowledge of data analysis in R to build highly efficient, end-to-end data analysis pipelines without any hassle.

You’ll start by building a content-based recommendation system, followed by building a project on sentiment analysis with tweets. You’ll implement time-series modeling for anomaly detection, and understand cluster analysis of streaming data. You’ll work through projects on performing efficient market data research, building recommendation systems, and analyzing networks accurately, all provided with easy to follow codes.

With the help of these real-world projects, you’ll get a better understanding of the challenges faced when building data analysis pipelines, and see how you can overcome them without compromising on the efficiency or accuracy of your systems. The book covers some popularly used R packages such as dplyr, ggplot2, RShiny, and others, and includes tips on using them effectively.

By the end of this book, you’ll have a better understanding of data analysis with R, and be able to put your knowledge to practical use without any hassle.

What you will learn

  • Build end-to-end predictive analytics systems in R
  • Build an experimental design to gather your own data and conduct analysis
  • Build a recommender system from scratch using different approaches
  • Use and leverage RShiny to build reactive programming applications
  • Build systems for varied domains including market research, network analysis, social media analysis, and more
  • Explore various R Packages such as RShiny, ggplot, recommenderlab, dplyr, and find out how to use them effectively
  • Communicate modeling results using Shiny Dashboards
  • Perform multi-variate time-series analysis prediction, supplemented with sensitivity analysis and risk modeling

About the Author

Gopi Subramanian is a scientist and author with over 18 years of experience in the fields of data mining and machine learning. During the past decade, he has worked extensively in data mining and machine learning, solving a variety of business problems.

He has 16 patent applications with the US and Indian patent offices and several publications to his credit. He is the author of Python Data Science Cookbook by Packt Publishing.

Table of Contents

  1. Building a Recommender System –I – A step by step approach to build Association Rule Mining
  2. Building a Recommender System II- Fuzzy Logic induced Content Based Recommendation
  3. Building a Recommender System III – Collaborative Filtering based recommendation systems
  4. Taming time series data – Time Series analysis using Recurrent Neural Networks
  5. Text Sentiment Classification using Kernel Density Estimates
  6. Record Linkage - Stochastic and Machine Learning Approaches
  7. Streaming data Clustering analysis in R
  8. Analyze and understand networks using R

商品描述(中文翻譯)

關鍵特點
- 一本方便的指南,幫助您提升對 R 數據分析的理解
- 專注於金融、網絡分析、社交媒體等問題的實際項目
- 從數據操作到分析再到可視化,這本書將教您使用 R 構建端到端數據分析管道所需的所有知識

書籍描述
R 提供了多種包和庫,用於快速且準確的數據分析和可視化。因此,它是數據科學家和分析師,或任何希望進行數據分析的人的最常用語言之一。本書將展示如何利用您現有的 R 數據分析知識,輕鬆構建高效的端到端數據分析管道。

您將從構建基於內容的推薦系統開始,接著進行基於推文的情感分析項目。您將實施時間序列建模以進行異常檢測,並理解流數據的聚類分析。您將完成高效市場數據研究、構建推薦系統和準確分析網絡的項目,所有項目都提供易於遵循的代碼。

通過這些實際項目的幫助,您將更好地理解在構建數據分析管道時面臨的挑戰,並看到如何在不妥協系統效率或準確性的情況下克服這些挑戰。本書涵蓋了一些常用的 R 包,如 dplyr、ggplot2、RShiny 等,並包括有效使用它們的技巧。

在本書結束時,您將對 R 的數據分析有更深入的理解,並能夠輕鬆地將您的知識付諸實踐。

您將學到的內容
- 在 R 中構建端到端的預測分析系統
- 建立實驗設計以收集自己的數據並進行分析
- 從零開始使用不同方法構建推薦系統
- 使用 RShiny 構建反應式編程應用程序
- 為市場研究、網絡分析、社交媒體分析等多個領域構建系統
- 探索各種 R 包,如 RShiny、ggplot、recommenderlab、dplyr,並了解如何有效使用它們
- 使用 Shiny Dashboards 傳達建模結果
- 執行多變量時間序列分析預測,並輔以敏感性分析和風險建模

關於作者
**Gopi Subramanian** 是一位科學家和作者,擁有超過 18 年的數據挖掘和機器學習領域的經驗。在過去的十年中,他在數據挖掘和機器學習方面廣泛工作,解決各種商業問題。

他在美國和印度專利局擁有 16 項專利申請,並有多篇出版物。他是 Packt Publishing 出版的《Python Data Science Cookbook》的作者。

目錄
1. 構建推薦系統 I – 一步一步構建關聯規則挖掘
2. 構建推薦系統 II – 模糊邏輯引導的基於內容的推薦
3. 構建推薦系統 III – 基於協同過濾的推薦系統
4. 駕馭時間序列數據 – 使用遞歸神經網絡進行時間序列分析
5. 使用核密度估計進行文本情感分類
6. 記錄鏈接 - 隨機和機器學習方法
7. 在 R 中進行流數據聚類分析
8. 使用 R 分析和理解網絡