Simulation for Data Science with R
暫譯: 使用 R 進行資料科學模擬

Matthias Templ

  • 出版商: Packt Publishing
  • 出版日期: 2016-06-30
  • 定價: $1,650
  • 售價: 6.0$990
  • 語言: 英文
  • 頁數: 398
  • 裝訂: Paperback
  • ISBN: 1785881167
  • ISBN-13: 9781785881169
  • 相關分類: Data Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Harness actionable insights from your data with computational statistics and simulations using R

About This Book

  • Learn five different simulation techniques (Monte Carlo, Discrete Event Simulation, System Dynamics, Agent-Based Modeling, and Resampling) in-depth using real-world case studies
  • A unique book that teaches you the essential and fundamental concepts in statistical modeling and simulation
  • This book is written by the Amazon best-selling author of Learning Statistics (The easier Way) with R

Who This Book Is For

This book is for users who are familiar with computational methods. If you want to learn about the advanced features of R, including the computer-intense Monte-Carlo methods as well as computational tools for statistical simulation, then this book is for you. Good knowledge of R programming is assumed/required.

What You Will Learn

  • The book aims to explore advanced R features to simulate data to extract insights from your data.
  • Get to know the advanced features of R including high-performance computing and advanced data manipulation
  • See random number simulation used to simulate distributions, data sets, and populations
  • Simulate close-to-reality populations as the basis for agent-based micro-, model- and design-based simulations
  • Applications to design statistical solutions with R for solving scientific and real world problems
  • Comprehensive coverage of several R statistical packages like boot, simPop, VIM, data.table, dplyr, parallel, StatDA, simecol, simecolModels, deSolve and many more.

In Detail

Data Science with R aims to teach you how to begin performing data science tasks by taking advantage of Rs powerful ecosystem of packages. R being the most widely used programming language when used with data science can be a powerful combination to solve complexities involved with varied data sets in the real world.

The book will provide a computational and methodological framework for statistical simulation to the users. Through this book, you will get in grips with the software environment R. After getting to know the background of popular methods in the area of computational statistics, you will see some applications in R to better understand the methods as well as gaining experience of working with real-world data and real-world problems. This book helps uncover the large-scale patterns in complex systems where interdependencies and variation are critical. An effective simulation is driven by data generating processes that accurately reflect real physical populations. You will learn how to plan and structure a simulation project to aid in the decision-making process as well as the presentation of results.

By the end of this book, you reader will get in touch with the software environment R. After getting background on popular methods in the area, you will see applications in R to better understand the methods as well as to gain experience when working on real-world data and real-world problems.

Style and approach

This book takes a practical, hands-on approach to explain the statistical computing methods, gives advice on the usage of these methods, and provides computational tools to help you solve common problems in statistical simulation and computer-intense methods.

商品描述(中文翻譯)

利用 R 的計算統計和模擬從數據中獲取可行的見解

本書介紹


  • 深入學習五種不同的模擬技術(蒙地卡羅法、離散事件模擬、系統動力學、基於代理的建模和重抽樣),並使用真實案例研究

  • 一本獨特的書籍,教你統計建模和模擬中的基本概念

  • 本書由《用 R 學習統計(更簡單的方法)》的亞馬遜暢銷書作者撰寫

本書適合誰

本書適合熟悉計算方法的用戶。如果你想了解 R 的高級功能,包括計算密集型的蒙地卡羅方法以及統計模擬的計算工具,那麼這本書就是為你而寫的。假設/要求具備良好的 R 程式設計知識。

你將學到什麼


  • 本書旨在探索 R 的高級功能,以模擬數據並從中提取見解。

  • 了解 R 的高級功能,包括高效能計算和高級數據處理

  • 查看隨機數模擬用於模擬分佈、數據集和人群

  • 模擬接近現實的人口,作為基於代理的微觀、模型和設計模擬的基礎

  • 應用 R 設計統計解決方案,以解決科學和現實世界的問題

  • 全面涵蓋多個 R 統計包,如 boot、simPop、VIM、data.table、dplyr、parallel、StatDA、simecol、simecolModels、deSolve 等等。

詳細內容

《用 R 進行數據科學》旨在教你如何利用 R 強大的包生態系統開始執行數據科學任務。R 是數據科學中最廣泛使用的程式語言,與數據科學結合使用時,可以有效解決現實世界中各種數據集所涉及的複雜性。

本書將為用戶提供統計模擬的計算和方法論框架。通過本書,你將熟悉軟體環境 R。在了解計算統計領域中流行方法的背景後,你將看到一些 R 的應用,以更好地理解這些方法,並獲得處理現實世界數據和問題的經驗。本書有助於揭示複雜系統中依賴性和變異性至關重要的大規模模式。有效的模擬是由準確反映真實物理人口的數據生成過程驅動的。你將學習如何計劃和結構模擬項目,以協助決策過程以及結果的呈現。

在本書結束時,讀者將熟悉軟體環境 R。在了解該領域流行方法的背景後,你將看到 R 的應用,以更好地理解這些方法,並在處理現實世界數據和問題時獲得經驗。

風格與方法

本書採取實用的、動手的方式來解釋統計計算方法,提供這些方法的使用建議,並提供計算工具以幫助你解決統計模擬和計算密集型方法中的常見問題。