Machine Learning Algorithms
暫譯: 機器學習演算法

Giuseppe Bonaccorso

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Get started in the field of machine learning with the help of this solid, concept rich, yet highly practical guide.
  • Your one-stop solution for everything that matters in machine learning algorithms, like the types, working, and implementation.
  • Get solid foundation to your entry in machine learning by strengthening your roots i.e the algorithms with this comprehensive guide.

Book Description

In this book you will learn all the important machine learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning and semi-supervised learning. Few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naïve Bayes, K-Means, Random Forest, XGBooster and Feature engineering. In this book you will also learn the working and the practical implementation of these algorithms to resolve your problems. This book will also introduce you to Natural Processing Language and Recommendation systems, which help you to run multiple algorithms simultaneously.

On completion of the book you will understand how to pick machine learning algorithm for clustering, classification, or regression best suited for your problem.

What you will learn

  • Acquaint yourself with important elements of Machine Learning
  • Understand the feature selection and feature engineering process
  • Assess performance and error trade-offs of Linear Regression
  • Build a data model and understand how it works by using different types of algorithms
  • Learn to tune parameters of Support Vector machines
  • Implement clusters to a data set
  • Explore the concept of Natural Processing Language and Recommendation Systems
  • Create a ML architecture from scratch.

商品描述(中文翻譯)

**主要特點**

- 在這本內容豐富且實用的指南中,幫助您開始進入機器學習領域。
- 您的一站式解決方案,涵蓋機器學習演算法中所有重要的內容,如類型、運作方式和實作。
- 通過這本全面的指南,鞏固您在機器學習中的基礎,即演算法,為您的入門打下堅實的基礎。

**書籍描述**

在這本書中,您將學習到在數據科學領域中常用的所有重要機器學習演算法。這些演算法可用於監督式學習、非監督式學習、強化學習和半監督式學習。本書涵蓋的一些著名演算法包括線性回歸(Linear regression)、邏輯回歸(Logistic Regression)、支持向量機(SVM)、朴素貝葉斯(Naïve Bayes)、K均值(K-Means)、隨機森林(Random Forest)、XGBoost和特徵工程(Feature engineering)。在本書中,您還將學習這些演算法的運作方式及其實際應用,以解決您的問題。本書還將介紹自然語言處理(Natural Processing Language)和推薦系統(Recommendation systems),幫助您同時運行多個演算法。

完成本書後,您將了解如何選擇最適合您問題的機器學習演算法,用於聚類、分類或回歸。

**您將學到的內容**

- 熟悉機器學習的重要元素
- 理解特徵選擇和特徵工程的過程
- 評估線性回歸的性能和誤差權衡
- 構建數據模型並理解其運作方式,使用不同類型的演算法
- 學習調整支持向量機的參數
- 對數據集實施聚類
- 探索自然語言處理和推薦系統的概念
- 從零開始創建機器學習架構。