scikit-learn Cookbook - Second Edition: Over 80 recipes for machine learning in Python with scikit-learn
暫譯: scikit-learn 食譜 - 第二版:超過 80 個使用 scikit-learn 進行 Python 機器學習的食譜
Julian Avila
- 出版商: Packt Publishing
- 出版日期: 2017-11-15
- 售價: $1,830
- 貴賓價: 9.5 折 $1,739
- 語言: 英文
- 頁數: 374
- 裝訂: Paperback
- ISBN: 178728638X
- ISBN-13: 9781787286382
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
相關主題
商品描述
Learn to use scikit-learn operations and functions for Machine Learning and deep learning applications.
About This Book
- Handle a variety of machine learning tasks effortlessly by leveraging the power of scikit-learn
- Perform supervised and unsupervised learning with ease, and evaluate the performance of your model
- Practical, easy to understand recipes aimed at helping you choose the right machine learning algorithm
Who This Book Is For
Data Analysts already familiar with Python but not so much with scikit-learn, who want quick solutions to the common machine learning problems will find this book to be very useful. If you are a Python programmer who wants to take a dive into the world of machine learning in a practical manner, this book will help you too.
What You Will Learn
- Build predictive models in minutes by using scikit-learn
- Understand the differences and relationships between Classification and Regression, two types of Supervised Learning.
- Use distance metrics to predict in Clustering, a type of Unsupervised Learning
- Find points with similar characteristics with Nearest Neighbors.
- Use automation and cross-validation to find a best model and focus on it for a data product
- Choose among the best algorithm of many or use them together in an ensemble.
- Create your own estimator with the simple syntax of sklearn
- Explore the feed-forward neural networks available in scikit-learn
In Detail
Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively.
The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naïve Bayes, classification, decision trees, Ensembles and much more. Furthermore, you ll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model.
By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.
Style and Approach
This book consists of practical recipes on scikit-learn that target novices as well as intermediate users. It goes deep into the technical issues, covers additional protocols, and many more real-live examples so that you are able to implement it in your daily life scenarios.
商品描述(中文翻譯)
學習使用 scikit-learn 的操作和函數來應用於機器學習和深度學習。
本書介紹
- 輕鬆處理各種機器學習任務,充分利用 scikit-learn 的強大功能
- 輕鬆執行監督式學習和非監督式學習,並評估模型的性能
- 實用且易於理解的食譜,幫助您選擇合適的機器學習算法
本書適合誰閱讀
對 Python 已經熟悉但對 scikit-learn 不太了解的數據分析師,想要快速解決常見機器學習問題的人會發現這本書非常有用。如果您是希望以實用方式深入機器學習世界的 Python 程式設計師,這本書也會對您有所幫助。
您將學到什麼
- 使用 scikit-learn 在幾分鐘內建立預測模型
- 理解分類(Classification)和回歸(Regression)這兩種監督式學習的差異和關係
- 使用距離度量在聚類(Clustering)中進行預測,這是一種非監督式學習
- 使用最近鄰(Nearest Neighbors)找到具有相似特徵的點
- 使用自動化和交叉驗證來尋找最佳模型,並專注於數據產品
- 在多個最佳算法中選擇,或將它們一起使用於集成(Ensemble)
- 使用 sklearn 的簡單語法創建自己的估計器(Estimator)
- 探索 scikit-learn 中可用的前饋神經網絡(feed-forward neural networks)
詳細內容
由於其簡單性和靈活性,Python 正迅速成為分析師和數據科學家的首選語言,而在 Python 數據領域中,scikit-learn 是機器學習的無可爭議的選擇。本書包括針對常見及不常見的機器學習問題的逐步指導和解決方案,以及如何有效利用 scikit-learn 執行各種機器學習任務。
第二版開始時將帶您了解評估數據統計特性的食譜,並生成用於機器學習建模的合成數據。隨著您逐步進入各章節,您將遇到教您實施數據預處理、線性回歸、邏輯回歸、K-NN、朴素貝葉斯、分類、決策樹、集成等技術的食譜。此外,您還將學習如何通過多類別分類、交叉驗證、模型評估來優化模型,並深入實施深度學習與 scikit-learn。除了涵蓋模型部分的增強功能、API 和分類器、回歸器及估計器等新功能外,本書還包含評估和微調模型性能的食譜。
在本書結束時,您將探索 scikit-learn 為 Python 提供的眾多功能,以解決您遇到的任何機器學習問題。
風格與方法
本書包含針對初學者和中級用戶的實用 scikit-learn 食譜。它深入探討技術問題,涵蓋額外的協議和更多實際案例,以便您能夠在日常生活場景中實施。