Machine Learning with TensorFlow 1.x: Second generation machine learning with Google's brainchild - TensorFlow 1.x
暫譯: 使用 TensorFlow 1.x 的機器學習:第二代機器學習與 Google 的創新 - TensorFlow 1.x
Quan Hua, Shams Ul Azeem, Saif Ahmed
- 出版商: Packt Publishing
- 出版日期: 2017-11-24
- 定價: $1,330
- 售價: 6.0 折 $798
- 語言: 英文
- 頁數: 304
- 裝訂: Paperback
- ISBN: 1786462966
- ISBN-13: 9781786462961
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
-
相關翻譯:
TensorFlow機器學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,500$2,375 -
$1,460Introduction to Fourier Optics, 3/e (Hardcover)
-
$650Ivor Horton's Beginning Visual C++ 2010 (Paperback)
-
$249$212 -
$600$540 -
$2,160$2,052 -
$4,870$4,627 -
$281程序員修煉之道 :從小工到專家 (The Pragmatic Programmer: From Journeyman to Master)
-
$3,600$3,420 -
$580$493 -
$560$437 -
$356C++ 多線程編程實戰
-
$349$332 -
$580$458 -
$653深度學習、優化與識別 (Deep Learning,Optimization and Recognition)
-
$403Keras 快速上手:基於 Python 的深度學習實戰
-
$1,568Machine Learning with Core ML
-
$556雲原生模式
-
$620$484 -
$380$342
相關主題
商品描述
Tackle common commercial machine learning problems with Google's TensorFlow 1.x library and build deployable solutions.
About This Book
- Enter the new era of second-generation machine learning with Python with this practical and insightful guide
- Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support
- Create pipelines for training and using applying classifiers using raw real-world data
Who This Book Is For
This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow's unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected.
What You Will Learn
- Explore how to use different machine learning models to ask different questions of your data
- Learn how to build deep neural networks using TensorFlow 1.x
- Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x
- Find out how to write clean and elegant Python code that will optimize the strength of your algorithms
- Discover how to embed your machine learning model in a web application for increased accessibility
- Learn how to use multiple GPUs for faster training using AWS
In Detail
Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x.
Firstly, you'll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard-all within an example-rich context using problems from multiple industries. You'll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you'll implement a complete real-life production system from training to serving a deep learning model. As you advance you'll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you'll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim.
By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment.
Style and approach
This comprehensive guide will enable you to understand the latest advances in machine learning and will empower you to implement this knowledge in your machine learning environment.
商品描述(中文翻譯)
使用 Google 的 TensorFlow 1.x 函式庫解決常見的商業機器學習問題並建立可部署的解決方案。
本書介紹
- 透過這本實用且具洞察力的指南,進入第二代機器學習的全新時代,使用 Python。
- 為實際工業用途設置 TensorFlow 1.x,包括多 GPU 支援等高效能設置方面。
- 使用原始的真實世界數據創建訓練和應用分類器的管道。
本書適合誰閱讀
本書適合希望從現有機器學習函式庫遷移或直接跳入機器學習平台的數據科學家和研究人員。這本書也適合希望通過範例學習深度學習的軟體開發人員。特別著重於使用 TensorFlow 的獨特功能解決來自多個行業的商業深度學習問題。不需要商業領域知識,但預期讀者對 Python 和矩陣數學有一定的熟悉度。
您將學到什麼
- 探索如何使用不同的機器學習模型來對數據提出不同的問題。
- 學習如何使用 TensorFlow 1.x 建立深度神經網絡。
- 涵蓋使用 TensorFlow 1.x 的關鍵任務,如聚類、情感分析和回歸分析。
- 了解如何編寫乾淨且優雅的 Python 代碼,以優化算法的效能。
- 發現如何將您的機器學習模型嵌入到網頁應用程式中,以提高可及性。
- 學習如何使用 AWS 的多 GPU 進行更快的訓練。
詳細內容
Google 的 TensorFlow 在機器學習的世界中是一個遊戲改變者。它使機器學習變得比以往更快、更簡單和更易於接觸。本書將教您如何利用 Python 和 TensorFlow 1.x 的力量輕鬆入門機器學習。
首先,您將涵蓋基本的安裝程序並探索 TensorFlow 1.x 的功能。接下來是訓練和運行第一個分類器,並介紹該函式庫的獨特功能,包括數據流圖、訓練和使用 TensorBoard 可視化性能——所有這些都在使用來自多個行業的問題的範例豐富的背景下進行。您將進一步探索文本和圖像分析,並介紹 CNN 模型及其在 TensorFlow 1.x 中的設置。接下來,您將實現一個完整的實際生產系統,從訓練到服務深度學習模型。隨著進展,您將了解 Amazon Web Services (AWS),並創建一個深度神經網絡來解決視頻動作識別問題。最後,您將把 Caffe 模型轉換為 TensorFlow,並介紹高階 TensorFlow 函式庫 TensorFlow-Slim。
在本書結束時,您將準備好應對在您的機器學習環境中實施 TensorFlow 1.x 的任何挑戰。
風格與方法
這本全面的指南將使您了解機器學習的最新進展,並使您能夠在您的機器學習環境中實施這些知識。