Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Frank Millstein
- 出版商: W. W. Norton
- 出版日期: 2018-05-21
- 售價: $1,170
- 貴賓價: 9.5 折 $1,112
- 語言: 英文
- 頁數: 496
- 裝訂: Paperback
- ISBN: 1719443718
- ISBN-13: 9781719443715
-
相關分類:
DeepLearning、Python、程式語言、TensorFlow、Machine Learning
無法訂購
相關主題
商品描述
!! Special 2-In-1 Deal - Buy The Paperback Version And Get The Ebook For FREE !!
Programming With Python - 4 BOOK BUNDLE!!
Deep Learning with Keras
Here Is a Preview of What You’ll Learn Here…
- The difference between deep learning and machine learning
- Deep neural networks
- Convolutional neural networks
- Building deep learning models with Keras
- Multi-layer perceptron network models
- Activation functions
- Handwritten recognition using MNIST
- Solving multi-class classification problems
- Recurrent neural networks and sequence classification
- And much more...
Convolutional Neural Networks in Python
Here Is a Preview of What You’ll Learn In This Book…
- Convolutional neural networks structure
- How convolutional neural networks actually work
- Convolutional neural networks applications
- The importance of convolution operator
- Different convolutional neural networks layers and their importance
- Arrangement of spatial parameters
- How and when to use stride and zero-padding
- Method of parameter sharing
- Matrix multiplication and its importance
- Pooling and dense layers
- Introducing non-linearity relu activation function
- How to train your convolutional neural network models using backpropagation
- How and why to apply dropout
- CNN model training process
- How to build a convolutional neural network
- Generating predictions and calculating loss functions
- How to train and evaluate your MNIST classifier
- How to build a simple image classification CNN
- And much, much more!
Python Machine Learning
Here Is A Preview Of What You’ll Learn Here…
- Basics behind machine learning techniques
- Different machine learning algorithms
- Fundamental machine learning applications and their importance
- Getting started with machine learning in Python, installing and starting SciPy
- Loading data and importing different libraries
- Data summarization and data visualization
- Evaluation of machine learning models and making predictions
- Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests
- Solving multi-clasisfication problems
- Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn
- Solving multi-label classification problems
- And much, much more...
Machine Learning With TensorFlow
Here Is a Preview of What You’ll Learn Here…
- What is machine learning
- Main uses and benefits of machine learning
- How to get started with TensorFlow, installing and loading data
- Data flow graphs and basic TensorFlow expressions
- How to define your data flow graphs and how to use TensorBoard for data visualization
- Main TensorFlow operations and building tensors
- How to perform data transformation using different techniques
- How to build high performance data pipelines using TensorFlow Dataset framework
- How to create TensorFlow iterators
- Creating MNIST classifiers with one-hot transformation
Get this book bundle NOW and SAVE money!
商品描述(中文翻譯)
!! 特別2合1優惠 - 購買平裝書版本即可免費獲得電子書 !!
使用Python進行編程 - 4本書籍合集!!
使用Keras進行深度學習
以下是您將在此書中學到的預覽內容...
- 深度學習和機器學習的區別
- 深度神經網絡
- 卷積神經網絡
- 使用Keras構建深度學習模型
- 多層感知器網絡模型
- 激活函數
- 使用MNIST進行手寫識別
- 解決多類別分類問題
- 循環神經網絡和序列分類
- 以及更多...
使用Python進行卷積神經網絡
以下是您將在本書中學到的預覽內容...
- 卷積神經網絡的結構
- 卷積神經網絡的工作原理
- 卷積神經網絡的應用
- 卷積運算符的重要性
- 不同的卷積神經網絡層及其重要性
- 空間參數的排列
- 何時以及如何使用步幅和零填充
- 參數共享的方法
- 矩陣乘法及其重要性
- 池化和全連接層
- 介紹非線性relu激活函數
- 使用反向傳播訓練卷積神經網絡模型
- 應用dropout的方法和原因
- 卷積神經網絡模型的訓練過程
- 如何構建卷積神經網絡
- 生成預測和計算損失函數
- 如何訓練和評估您的MNIST分類器
- 如何構建一個簡單的圖像分類卷積神經網絡
- 以及更多更多!
Python機器學習
以下是您將在本書中學到的預覽內容...
- 機器學習技術的基礎知識
- 不同的機器學習算法
- 基本的機器學習應用及其重要性
- 在Python中開始使用機器學習,安裝和啟動SciPy
- 加載數據和導入不同的庫
- 數據摘要和數據可視化
- 評估機器學習模型並進行預測
- 最常用的機器學習算法,線性和邏輯回歸,決策樹支持向量機,k最近鄰算法,隨機森林
- 解決多分類問題
- 使用Matplotlib進行數據可視化,使用Pandas和Scikit-learn進行數據轉換
- 解決多標籤分類問題
- 以及更多更多!
使用TensorFlow進行機器學習
以下是您將在本書中學到的預覽內容...
- 什麼是機器學習
- 機器學習的主要用途和好處
- 如何開始使用TensorFlow,安裝和加載數據
- 數據流圖和基本的TensorFlow表達式
- 如何定義您的數據流圖以及如何使用TensorBoard進行數據可視化
- 主要的TensorFlow操作和構建張量
- 如何使用不同的技術進行數據轉換
- 如何使用TensorFlow數據集框架構建高性能數據管道
- 如何創建TensorFlow迭代器
- 使用one-hot轉換創建MNIST分類器