Natural Language Processing: Python and NLTK
暫譯: 自然語言處理:Python 與 NLTK

Nitin Hardeniya, Jacob Perkins, Deepti Chopra, Nisheeth Joshi, Iti Mathur

買這商品的人也買了...

相關主題

商品描述

Learn to build expert NLP and machine learning projects using NLTK and other Python libraries

About This Book

  • Break text down into its component parts for spelling correction, feature extraction, and phrase transformation
  • Work through NLP concepts with simple and easy-to-follow programming recipes
  • Gain insights into the current and budding research topics of NLP

Who This Book Is For

If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable.

What You Will Learn

  • The scope of natural language complexity and how they are processed by machines
  • Clean and wrangle text using tokenization and chunking to help you process data better
  • Tokenize text into sentences and sentences into words
  • Classify text and perform sentiment analysis
  • Implement string matching algorithms and normalization techniques
  • Understand and implement the concepts of information retrieval and text summarization
  • Find out how to implement various NLP tasks in Python

In Detail

Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages.

The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy.

The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods.

The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python.

This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products:

  • NTLK essentials by Nitin Hardeniya
  • Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins
  • Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur

Style and approach

This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.

商品描述(中文翻譯)

學習使用 NLTK 和其他 Python 函式庫構建專業的自然語言處理 (NLP) 和機器學習專案

本書介紹


  • 將文本分解為其組成部分,以進行拼寫校正、特徵提取和短語轉換

  • 通過簡單易懂的程式設計食譜來學習 NLP 概念

  • 深入了解當前和新興的 NLP 研究主題

本書適合誰閱讀

如果您是 NLP 或機器學習愛好者,並且是一位中級 Python 程式設計師,想要快速掌握 NLTK 以進行自然語言處理,那麼這條學習路徑將對您大有裨益。語言學學生和語義/情感分析專業人士將會發現這本書非常有價值。

您將學到什麼


  • 自然語言的複雜性範疇及其如何被機器處理

  • 使用標記化和分塊技術清理和整理文本,以幫助您更好地處理數據

  • 將文本標記化為句子,並將句子標記化為單詞

  • 對文本進行分類並執行情感分析

  • 實現字串匹配演算法和正規化技術

  • 理解並實現資訊檢索和文本摘要的概念

  • 了解如何在 Python 中實現各種 NLP 任務

詳細內容

自然語言處理是一個計算語言學和人工智慧的領域,涉及人機互動。它提供了計算機與人類之間的無縫互動,並使計算機能夠通過機器學習理解人類語言。人機互動的實例數量正在增加,因此計算機理解所有主要自然語言變得至關重要。

第一個 NLTK 基礎模組介紹了如何圍繞 NLP 構建系統,重點在於如何從零開始創建自定義的標記器和解析器。您將學習 NLP 的基本概念,獲得有關 Python 中可用的開源工具和函式庫的實用見解,了解如何分析社交媒體網站,並獲得處理大規模文本的工具。此模組還提供了一些使用 Python 函式庫(如 NLTK、scikit-learn、pandas 和 NumPy)驚人功能的解決方案。

第二個 Python 3 與 NLTK 3 食譜模組教您文本和語言處理的基本技術,並提供簡單明瞭的範例。這包括組織文本語料庫、創建自己的自定義語料庫、專注於情感分析的文本分類以及分散式文本處理方法。

第三個 Python 自然語言處理精通模組將幫助您成為專家,並協助您使用 NLTK 創建自己的 NLP 專案。您將在機器學習工具的指導下進行模型開發,了解如何創建訓練數據,並獲得有關使用 Python 設計和構建基於 NLP 的應用程序的最佳實踐的見解。

這條學習路徑結合了 Packt 提供的一些最佳內容,形成一個完整的策劃包,旨在幫助您快速學習使用 Python 和 NLTK 進行文本處理。它包括以下 Packt 產品的內容:


  • Nitin Hardeniya 的 NLTK 基礎

  • Jacob Perkins 的 Python 3 與 NLTK 3 食譜

  • Deepti Chopra、Nisheeth Joshi 和 Iti Mathur 的 Python 自然語言處理精通

風格與方法

這門綜合課程創建了一條順暢的學習路徑,教您如何使用 Python 和 NLTK 開始自然語言處理。您將學會使用 Python 和 NLTK 創建有效的 NLP 和機器學習專案。