Mastering Machine Learning with R Second Edition
Cory Lesmeister
- 出版商: Packt Publishing
- 出版日期: 2017-04-24
- 售價: $2,170
- 貴賓價: 9.5 折 $2,062
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 1787287475
- ISBN-13: 9781787287471
-
相關分類:
R 語言、Machine Learning
-
相關翻譯:
精通機器學習 基於R 第2版 (簡中版)
相關主題
商品描述
Key Features
- Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST
- Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning
- Implement advanced concepts in machine learning with this example-rich guide
Book Description
This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more.
You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do.
With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets.
What you will learn
- Gain deep insights into the application of machine learning tools in the industry
- Manipulate data in R efficiently to prepare it for analysis
- Master the skill of recognizing techniques for effective visualization of data
- Understand why and how to create test and training data sets for analysis
- Master fundamental learning methods such as linear and logistic regression
- Comprehend advanced learning methods such as support vector
商品描述(中文翻譯)
主要特點
- 使用廣泛的R套件(如XGBOOST)來理解和應用機器學習方法
- 了解使用機器學習方法(如多類別分類和無監督學習)的好處和潛在問題
- 通過豐富的示例指南實施機器學習的高級概念
書籍描述
本書將教授您使用R 3.3.2中最新的代碼進行機器學習的高級技術。您將深入研究統計學習理論和監督學習;設計高效的算法;學習創建推薦引擎;使用多類別分類和深度學習等等。
您將深入探索數據挖掘、分類、聚類、回歸、預測建模、異常檢測、使用XGBOOST進行提升樹等主題。您不僅僅了解結果,還將理解這些概念的工作原理和功能。
通過對神經網絡等主題的深入學習,您將探索深度學習等更多內容。通過本書的學習,您將能夠在AWS上使用R進行機器學習,應用於不同數據集的各種場景。
您將學到什麼
- 深入了解機器學習工具在行業中的應用
- 高效地在R中操作數據,為分析做好準備
- 掌握有效可視化數據的技巧
- 了解為分析創建測試和訓練數據集的原因和方法
- 掌握線性和邏輯回歸等基本學習方法
- 理解支持向量等高級學習方法