Modern Time Series Forecasting with Python: Explore industry-ready time series forecasting using modern machine learning and deep learning (Paperback)
暫譯: 使用 Python 進行現代時間序列預測:探索使用現代機器學習和深度學習的行業級時間序列預測

Joseph, Manu

買這商品的人也買了...

相關主題

商品描述

Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts

 

Key Features:

  • Explore industry-tested machine learning techniques used to forecast millions of time series
  • Get started with the revolutionary paradigm of global forecasting models
  • Get to grips with new concepts by applying them to real-world datasets of energy forecasting

 

Book Description:

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML.

This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You'll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you'll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability.

By the end of this book, you'll be able to build world-class time series forecasting systems and tackle problems in the real world.

 

What You Will Learn:

  • Find out how to manipulate and visualize time series data like a pro
  • Set strong baselines with popular models such as ARIMA
  • Discover how time series forecasting can be cast as regression
  • Engineer features for machine learning models for forecasting
  • Explore the exciting world of ensembling and stacking models
  • Get to grips with the global forecasting paradigm
  • Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer
  • Explore multi-step forecasting and cross-validation strategies

 

Who this book is for:

The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.

商品描述(中文翻譯)

建立可擴展至數百萬時間序列的實際時間序列預測系統,應用現代機器學習和深度學習概念

主要特點:


  • 探索用於預測數百萬時間序列的行業驗證機器學習技術

  • 開始了解全球預測模型的革命性範式

  • 通過將新概念應用於能源預測的實際數據集來掌握它們

書籍描述:

我們生活在一個偶然的時代,數據收集的量激增以及對數據驅動技術(如機器學習 (ML))的新興興趣,改變了分析的格局,隨之而來的是時間序列預測。本書充滿了行業驗證的技巧和竅門,帶您超越常用的經典統計方法(如 ARIMA),並介紹來自機器學習領域的最新技術。

這是一本全面的指南,涵蓋分析、視覺化和創建最先進的預測系統,包含常見主題如機器學習和深度學習 (DL),以及鮮少觸及的主題如全球預測模型、交叉驗證策略和預測指標。您將首先探索數據處理、數據視覺化和經典統計方法的基礎,然後轉向時間序列預測的機器學習和深度學習模型。本書將帶您進行實踐之旅,您將在實際數據集上開發最先進的機器學習(從線性回歸到梯度提升樹)和深度學習(前饋神經網絡、LSTM 和變壓器)模型,並探索可解釋性等實用主題。

在本書結束時,您將能夠建立世界級的時間序列預測系統,並解決現實世界中的問題。

您將學到什麼:


  • 了解如何像專業人士一樣操作和視覺化時間序列數據

  • 使用流行模型(如 ARIMA)設置強基準

  • 發現時間序列預測如何被視為回歸問題

  • 為預測的機器學習模型工程特徵

  • 探索集成和堆疊模型的激動人心的世界

  • 掌握全球預測範式

  • 理解並應用最先進的深度學習模型,如 N-BEATS 和 Autoformer

  • 探索多步預測和交叉驗證策略

本書適合誰:

本書適合數據科學家、數據分析師、機器學習工程師和希望建立行業準備的時間序列模型的 Python 開發者。由於本書從基礎開始解釋大多數概念,因此只需具備基本的 Python 熟練度。對機器學習或預測的先前理解將有助於加快您的學習。對於經驗豐富的機器學習和預測實踐者,本書在高級技術和探索時間序列預測最新研究前沿方面提供了豐富的內容。