Scala Machine Learning Projects: Build real-world machine learning and deep learning projects with Scala
暫譯: Scala 機器學習專案:使用 Scala 建立實際的機器學習與深度學習專案

Md. Rezaul Karim

相關主題

商品描述

Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming.

Key Features

  • Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j
  • Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way
  • Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework.

Book Description

Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development.

If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet.

At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment.

What you will learn

  • Apply advanced regression techniques to boost the performance of predictive models
  • Use different classification algorithms for business analytics
  • Generate trading strategies for Bitcoin and stock trading using ensemble techniques
  • Train Deep Neural Networks (DNN) using H2O and Spark ML
  • Utilize NLP to build scalable machine learning models
  • Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application
  • Learn how to use autoencoders to develop a fraud detection application
  • Implement LSTM and CNN models using DeepLearning4j and MXNet

Who This Book Is For

If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

Table of Contents

  1. Analyzing Insurance Severity Claim
  2. Analyzing Outgoing Customers through Churn Prediction
  3. High Frequency Bitcoin Price Prediction from Historical and Live Data
  4. Population Scale Clustering and Ethnicity Analysis
  5. Topic Modelling in NLP: A Better Insight to Large-Scale Texts
  6. Model-based Movie Recommendation Engine
  7. Deep Reinforcement Learning using Markov Decision Process (MDP)
  8. Using Deep Belief Networks in Bank Marketing
  9. Fraud Analytics using Autoencoders and Anomaly Detection
  10. Human Activity Recognition using RNN
  11. Image Classification using CNN

商品描述(中文翻譯)

強大的智能應用程式,利用深度學習演算法主導數值計算、深度學習和函數式程式設計。

主要特點
- 探索機器學習技術,使用著名的開源 Scala 函式庫,如 Spark ML、H2O、MXNet、Zeppelin 和 DeepLearning4j
- 通過深入複雜的數值計算,使用 Scala 函數式程式設計以可擴展和更快速的方式解決現實世界的機器學習問題
- 涵蓋所有關鍵方面,如收集、存儲、處理、分析和評估,這些都是在計算集群上使用 Scala Play 框架構建和部署機器模型所需的。

書籍描述
機器學習對學術界和產業產生了巨大的影響,將數據轉化為可行的信息。Scala 在過去幾年中逐漸被採用,特別是在數據科學和分析領域。本書適合具有複雜數值計算背景的數據科學家、數據工程師和深度學習愛好者,並希望深入了解機器學習應用開發的實踐。

如果您對機器學習概念非常熟悉,並希望通過利用 Scala 的力量擴展您的知識,深入了解這些概念的實際實施,那麼這本書正是您所需要的!通過 11 個端到端的專案,您將熟悉流行的機器學習函式庫,如 Spark ML、H2O、DeepLearning4j 和 MXNet。

最後,您將能夠使用數值計算和函數式程式設計來執行複雜的數值任務,以在生產環境中開發、構建和部署研究或商業專案。

您將學到的內容
- 應用先進的回歸技術以提升預測模型的性能
- 使用不同的分類演算法進行商業分析
- 使用集成技術生成比特幣和股票交易策略
- 使用 H2O 和 Spark ML 訓練深度神經網絡 (DNN)
- 利用自然語言處理 (NLP) 構建可擴展的機器學習模型
- 學習如何應用強化學習演算法,如 Q-learning,來開發機器學習應用
- 學習如何使用自編碼器開發詐騙檢測應用
- 使用 DeepLearning4j 和 MXNet 實現 LSTM 和 CNN 模型

本書適合的人群
如果您想利用 Scala 和 Spark 的力量來理解大數據,那麼這本書適合您。如果您對機器學習概念非常熟悉,並希望通過利用 Scala 的力量深入了解實際實施,那麼這本書正是您所需要的!建議對 Scala 程式語言有較強的理解。對機器學習技術有基本的熟悉將更有幫助。

目錄
1. 分析保險索賠的嚴重性
2. 通過流失預測分析流失客戶
3. 從歷史和實時數據中預測高頻比特幣價格
4. 人口規模的聚類和族裔分析
5. 自然語言處理中的主題建模:對大規模文本的更好洞察
6. 基於模型的電影推薦引擎
7. 使用馬可夫決策過程 (MDP) 的深度強化學習
8. 在銀行行銷中使用深度信念網絡
9. 使用自編碼器和異常檢測進行詐騙分析
10. 使用 RNN 進行人類活動識別
11. 使用 CNN 進行圖像分類