Hands-On Transfer Learning with Python: Implement advanced deep learning and neural network models using TensorFlow and Keras
暫譯: 實作轉移學習與 Python:使用 TensorFlow 和 Keras 實現進階深度學習與神經網路模型

Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh

買這商品的人也買了...

相關主題

商品描述

Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem

Key Features

  • Build deep learning models with transfer learning principles in Python
  • implement transfer learning to solve real-world research problems
  • Perform complex operations such as image captioning neural style transfer

Book Description

Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.

The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples.

The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).

By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.

What you will learn

  • Set up your own DL environment with graphics processing unit (GPU) and Cloud support
  • Delve into transfer learning principles with ML and DL models
  • Explore various DL architectures, including CNN, LSTM, and capsule networks
  • Learn about data and network representation and loss functions
  • Get to grips with models and strategies in transfer learning
  • Walk through potential challenges in building complex transfer learning models from scratch
  • Explore real-world research problems related to computer vision and audio analysis
  • Understand how transfer learning can be leveraged in NLP

Who this book is for

Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.

Table of Contents

  1. Machine Learning Fundamentals
  2. Deep Learning Essentials
  3. Understanding Deep Learning Architectures
  4. Transfer Learning Fundamentals
  5. Unleash the Power of Transfer Learning
  6. Image Recognition and Classification
  7. Text Document Categorization
  8. Audio Identification and Categorization
  9. Deep Dream
  10. Neural Style Transfer
  11. Automated Image Caption Generator
  12. Image Colorization

商品描述(中文翻譯)

透過使用 Python 生態系統,簡化深度學習,將監督式、非監督式和強化學習提升到新水平

主要特點


  • 在 Python 中使用遷移學習原則構建深度學習模型

  • 實施遷移學習以解決現實世界的研究問題

  • 執行複雜操作,例如圖像標題生成和神經風格轉換

書籍描述

遷移學習是一種機器學習(ML)技術,其中在訓練一組問題時獲得的知識可以用來解決其他類似的問題。

本書的目的有兩個;首先,我們專注於深度學習(DL)和遷移學習的詳細介紹,通過易於理解的概念和範例來比較和對比這兩者。第二個重點是使用 TensorFlow、Keras 和 Python 生態系統的現實世界範例和研究問題,並提供實作範例。

本書從機器學習和深度學習的關鍵基本概念開始,接著描述和涵蓋重要的深度學習架構,例如卷積神經網絡(CNN)、深度神經網絡(DNN)、遞迴神經網絡(RNN)、長短期記憶(LSTM)和膠囊網絡。然後,我們將重點轉向遷移學習的概念,例如模型凍結、微調、包括 VGG、Inception、ResNet 的預訓練模型,以及這些系統如何在實際範例中表現得比深度學習模型更好。在結尾章節中,我們將專注於與計算機視覺、音頻分析和自然語言處理(NLP)等領域相關的多個現實世界案例研究和問題。

在本書結束時,您將能夠在自己的系統中實施深度學習和遷移學習原則。

您將學到什麼


  • 設置自己的深度學習環境,支持圖形處理單元(GPU)和雲端

  • 深入了解機器學習和深度學習模型的遷移學習原則

  • 探索各種深度學習架構,包括 CNN、LSTM 和膠囊網絡

  • 了解數據和網絡表示及損失函數

  • 掌握遷移學習中的模型和策略

  • 了解從零開始構建複雜遷移學習模型的潛在挑戰

  • 探索與計算機視覺和音頻分析相關的現實世界研究問題

  • 理解如何在自然語言處理中利用遷移學習

本書適合誰

《Python 實戰遷移學習》適合數據科學家、機器學習工程師、分析師和開發人員,他們對數據感興趣並希望應用最先進的遷移學習方法來解決棘手的現實問題。需要具備基本的機器學習和 Python 熟練度。

目錄


  1. 機器學習基礎

  2. 深度學習要素

  3. 理解深度學習架構

  4. 遷移學習基礎

  5. 釋放遷移學習的力量

  6. 圖像識別與分類

  7. 文本文件分類

  8. 音頻識別與分類

  9. 深度夢想

  10. 神經風格轉換

  11. 自動圖像標題生成器

  12. 圖像上色