Hands-On Artificial Intelligence for IoT: Expert machine learning and deep learning techniques for developing smarter IoT systems
暫譯: 物聯網實戰人工智慧:專家級機器學習與深度學習技術開發更智慧的物聯網系統

Amita Kapoor

買這商品的人也買了...

相關主題

商品描述

Build smarter systems by combining artificial intelligence and the Internet of Things―two of the most talked about topics today

Key Features

  • Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data
  • Process IoT data and predict outcomes in real time to build smart IoT models
  • Cover practical case studies on industrial IoT, smart cities, and home automation

Book Description

There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter.

This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models.

By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.

What you will learn

  • Apply different AI techniques including machine learning and deep learning using TensorFlow and Keras
  • Access and process data from various distributed sources
  • Perform supervised and unsupervised machine learning for IoT data
  • Implement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platforms
  • Forecast time-series data using deep learning methods
  • Implementing AI from case studies in Personal IoT, Industrial IoT, and Smart Cities
  • Gain unique insights from data obtained from wearable devices and smart devices

Who this book is for

If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Table of Contents

  1. Principles and Foundations of IoT and AI
  2. Data Access and Distributed Processing for IoT
  3. Machine Learning for IoT
  4. Deep Learning for IoT
  5. Genetic Algorithms for IoT
  6. Reinforcement Learning for IoT
  7. GAN for IoT
  8. Distributed AI for IoT
  9. Personal and Home and IoT
  10. AI for Industrial IoT
  11. AI for Smart Cities IoT
  12. Combining It All Together

商品描述(中文翻譯)

建構更智慧的系統,結合人工智慧與物聯網——當今最受關注的兩個主題

主要特點
- 利用 Python 函式庫如 TensorFlow 和 Keras 處理即時的物聯網數據
- 處理物聯網數據並即時預測結果,以建立智慧物聯網模型
- 涵蓋工業物聯網、智慧城市和家庭自動化的實務案例研究

書籍描述
有許多應用程式使用數據科學和分析從數TB的數據中獲取見解。然而,這些應用程式並未解決持續發現物聯網數據模式的挑戰。在《物聯網實務人工智慧》中,我們涵蓋了人工智慧(AI)的各個方面及其實施,以使您的物聯網解決方案更智慧。

本書首先介紹從分散來源收集和預處理物聯網數據的過程。您將學習不同的 AI 技術,如機器學習、深度學習、強化學習和自然語言處理,以建立智慧物聯網系統。您還將利用 AI 的力量來處理來自可穿戴設備的即時數據。隨著您進入書中的內容,將涵蓋與物聯網設備生成和消耗的不同類型數據(如時間序列、圖像和音頻)相關的模型構建技術。本書的重點是四個主要物聯網解決方案應用領域的有用案例研究。在結尾章節中,您將利用廣泛使用的 Python 函式庫 TensorFlow 和 Keras 來構建不同類型的智慧 AI 模型。

在本書結束時,您將能夠自信地構建智慧的 AI 驅動物聯網應用程式。

您將學到的內容
- 應用不同的 AI 技術,包括使用 TensorFlow 和 Keras 的機器學習和深度學習
- 訪問和處理來自各種分散來源的數據
- 對物聯網數據執行監督式和非監督式機器學習
- 使用 MLLib 和 H2O.ai 平台在 Apache Spark 上實施物聯網數據的分散處理
- 使用深度學習方法預測時間序列數據
- 從個人物聯網、工業物聯網和智慧城市的案例研究中實施 AI
- 從可穿戴設備和智慧設備獲取獨特的見解

本書適合誰
如果您是數據科學專業人士或機器學習開發者,想要為物聯網構建智慧系統,《物聯網實務人工智慧》適合您。如果您想了解流行的人工智慧(AI)技術如何應用於物聯網領域,本書也將對您有所幫助。為了充分利用本書,您需要對機器學習概念有基本的理解。

目錄
1. 物聯網與人工智慧的原則與基礎
2. 物聯網的數據訪問與分散處理
3. 物聯網的機器學習
4. 物聯網的深度學習
5. 物聯網的遺傳演算法
6. 物聯網的強化學習
7. 物聯網的生成對抗網絡(GAN)
8. 物聯網的分散式人工智慧
9. 個人及家庭物聯網
10. 工業物聯網的人工智慧
11. 智慧城市物聯網的人工智慧
12. 將所有內容結合在一起