Hands-On Image Processing with Python: Expert techniques for advanced image analysis and effective interpretation of image data
暫譯: Python 實戰影像處理:進階影像分析與有效解讀影像數據的專家技術

Sandipan Dey

相關主題

商品描述

Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks.

Key Features

  • Practical coverage of every image processing task with popular Python libraries
  • Includes topics such as pseudo-coloring, noise smoothing, computing image descriptors
  • Covers popular machine learning and deep learning techniques for complex image processing tasks

Book Description

Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python.

The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing.

By the end of this book, we will have learned to implement various algorithms for efficient image processing.

What you will learn

  • Perform basic data pre-processing tasks such as image denoising and spatial filtering in Python
  • Implement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in Python
  • Do morphological image processing and segment images with different algorithms
  • Learn techniques to extract features from images and match images
  • Write Python code to implement supervised / unsupervised machine learning algorithms for image processing
  • Use deep learning models for image classification, segmentation, object detection and style transfer

Who this book is for

This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.

Table of Contents

  1. Getting started with Image Processing
  2. Sampling Fourier Transform
  3. Convolution and Frequency domain Filtering
  4. Image Enhancement
  5. Image Enhancement using Derivatives
  6. Morphological Image Processing
  7. Extracting Image Features and Descriptors
  8. Image Segmentation
  9. Classical Machine Learning Methods
  10. Learning in Image Processing - Image Classification with CNN
  11. Object Detection, Deep Segmentation and Transfer Learning
  12. Additional Problems in Image Processing

商品描述(中文翻譯)

**探索使用流行的 Python 工具和框架進行影像處理的數學計算和演算法。**

#### 主要特點
- 實用涵蓋每個影像處理任務,使用流行的 Python 函式庫
- 包含主題如偽彩色處理、噪聲平滑、計算影像描述符
- 涵蓋流行的機器學習和深度學習技術,用於複雜的影像處理任務

#### 書籍描述
影像處理在我們的日常生活中扮演著重要角色,應用範圍包括社交媒體(臉部偵測)、醫學影像(X 光、CT 掃描)、安全(指紋識別)以及機器人和太空。本書將深入探討影像處理的核心,從概念到使用 Python 的程式碼。

本書將從經典的影像處理技術開始,探索影像處理演算法的演變,直到最近在影像處理或計算機視覺領域的深度學習進展。我們將學習如何在 Python 中使用影像處理函式庫,如 PIL、scikit-image 和 scipy.ndimage。本書將使我們能夠在 Python 3 中編寫程式碼片段,並快速實現複雜的影像處理演算法,如影像增強、過濾、分割、物體偵測和分類。我們將能夠使用 scikit-learn 函式庫中的機器學習模型,並進一步探索深度 CNN,如 VGG-19 與 Keras,還將使用一個名為 YOLO 的端到端深度學習模型進行物體偵測。我們還將涵蓋一些進階問題,如影像修補、梯度混合、變分去噪、接縫雕刻、拼布和變形。

在本書結束時,我們將學會實現各種高效的影像處理演算法。

#### 您將學到的內容
- 在 Python 中執行基本的數據預處理任務,如影像去噪和空間過濾
- 在 Python 中實現快速傅立葉變換(FFT)和頻域濾波器(例如,維納濾波器)
- 進行形態學影像處理並使用不同演算法對影像進行分割
- 學習從影像中提取特徵和匹配影像的技術
- 編寫 Python 程式碼以實現監督式/非監督式機器學習演算法進行影像處理
- 使用深度學習模型進行影像分類、分割、物體偵測和風格轉換

#### 本書適合誰
本書適合計算機視覺工程師和精通 Python 程式設計的機器學習開發者,想要探索影像處理的細節和複雜性。無需具備影像處理技術的先前知識。

#### 目錄
1. 影像處理入門
2. 取樣傅立葉變換
3. 卷積和頻域濾波
4. 影像增強
5. 使用導數的影像增強
6. 形態學影像處理
7. 提取影像特徵和描述符
8. 影像分割
9. 經典機器學習方法
10. 影像處理中的學習 - 使用 CNN 進行影像分類
11. 物體偵測、深度分割和轉移學習
12. 影像處理中的其他問題