Neural Networks with Keras Cookbook
暫譯: Keras 食譜:神經網絡實戰指南

V Kishore Ayyadevara

  • 出版商: Packt Publishing
  • 出版日期: 2019-02-28
  • 售價: $1,380
  • 貴賓價: 9.5$1,311
  • 語言: 英文
  • 頁數: 568
  • 裝訂: Paperback
  • ISBN: 1789346649
  • ISBN-13: 9781789346640
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Key Features

  • From scratch, build multiple neural network architectures such as CNN, RNN, LSTM in Keras
  • Discover tips and tricks for designing a robust neural network to solve real-world problems
  • Graduate from understanding the working details of neural networks and master the art of fine-tuning them

Book Description

This book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach.

We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data.

Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks.

We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems.

Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game.

By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter.

What you will learn

  • Build multiple advanced neural network architectures from scratch
  • Explore transfer learning to perform object detection and classification
  • Build self-driving car applications using instance and semantic segmentation
  • Understand data encoding for image, text and recommender systems
  • Implement text analysis using sequence-to-sequence learning
  • Leverage a combination of CNN and RNN to perform end-to-end learning
  • Build agents to play games using deep Q-learning

Who this book is for

This intermediate-level book targets beginners and intermediate-level machine learning practitioners and data scientists who have just started their journey with neural networks. This book is for those who are looking for resources to help them navigate through the various neural network architectures; you'll build multiple architectures, with concomitant case studies ordered by the complexity of the problem. A basic understanding of Python programming and a familiarity with basic machine learning are all you need to get started with this book.

商品描述(中文翻譯)

#### 主要特點

- 從零開始,使用 Keras 建立多種神經網絡架構,如 CNN、RNN、LSTM
- 發現設計穩健神經網絡以解決現實世界問題的技巧和竅門
- 從理解神經網絡的工作細節,進而掌握微調的藝術

#### 書籍描述

本書將帶您從神經網絡的基本概念到使用食譜式方法的高級架構實現。

我們將學習神經網絡的運作原理以及各種超參數對網絡準確性的影響,並利用神經網絡處理結構化和非結構化數據。

接下來,我們將學習如何在圖像中分類和檢測物體。我們還將學習如何使用遷移學習進行多種應用,包括使用卷積神經網絡的自駕車。

我們將利用生成對抗網絡(GAN)生成圖像,並通過圖像編碼來實現。此外,我們將使用基於詞向量的技術進行文本分析。之後,我們將使用循環神經網絡(RNN)和 LSTM 實現聊天機器人和機器翻譯系統。

最後,您將學習如何轉錄圖像、音頻,生成字幕,並使用深度 Q 學習構建一個玩太空入侵者遊戲的代理。

到本書結束時,您將具備選擇和自定義多種神經網絡架構以應對各種深度學習問題的技能。

#### 您將學到什麼

- 從零開始建立多種高級神經網絡架構
- 探索遷移學習以進行物體檢測和分類
- 使用實例分割和語義分割構建自駕車應用
- 理解圖像、文本和推薦系統的數據編碼
- 使用序列到序列學習實現文本分析
- 利用 CNN 和 RNN 的組合進行端到端學習
- 使用深度 Q 學習構建玩遊戲的代理

#### 本書適合誰

本書為中級水平,針對剛開始接觸神經網絡的初學者和中級機器學習從業者及數據科學家。本書適合那些尋找資源以幫助他們了解各種神經網絡架構的人;您將建立多種架構,並根據問題的複雜性進行相應的案例研究。您只需具備基本的 Python 編程知識和對基本機器學習的熟悉程度,即可開始閱讀本書。

目錄大綱

  1. Building a neural network with Tensorflow and Keras
  2. Building a deep neural network
  3. Applications of deep feed forward neural networks
  4. Building a deep convolutional neural networ
  5. Transfer Learning
  6. Object detection and localization
  7. Applications of image analysis in self-driving car
  8. Image generation
  9. Encoding inputs
  10. Text analysis using word vectors
  11. Building a Recurrent neural Network
  12. Applications of many to one architecture based RNN
  13. Sequence to Sequence learning
  14. End to end learning
  15. Audio analysis
  16. Reinforcement learning

目錄大綱(中文翻譯)


  1. Building a neural network with Tensorflow and Keras

  2. Building a deep neural network

  3. Applications of deep feed forward neural networks

  4. Building a deep convolutional neural networ

  5. Transfer Learning

  6. Object detection and localization

  7. Applications of image analysis in self-driving car

  8. Image generation

  9. Encoding inputs

  10. Text analysis using word vectors

  11. Building a Recurrent neural Network

  12. Applications of many to one architecture based RNN

  13. Sequence to Sequence learning

  14. End to end learning

  15. Audio analysis

  16. Reinforcement learning