Deep Learning with PyTorch Quick Start Guide: Learn to train and deploy neural network models in Python

David Julian

相關主題

商品描述

Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing.

Key Features

  • Clear and concise explanations
  • Gives important insights into deep learning models
  • Practical demonstration of key concepts

Book Description

PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power.

This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders.

You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text.

By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease.

What you will learn

  • Set up the deep learning environment using the PyTorch library
  • Learn to build a deep learning model for image classification
  • Use a convolutional neural network for transfer learning
  • Understand to use PyTorch for natural language processing
  • Use a recurrent neural network to classify text
  • Understand how to optimize PyTorch in multiprocessor and distributed environments
  • Train, optimize, and deploy your neural networks for maximum accuracy and performance
  • Learn to deploy production-ready models

Who this book is for

Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.

Table of Contents

  1. Introduction to PyTorch
  2. Deep Learning Fundamentals
  3. Computational Graphs and Linear Models
  4. Convolutional Networks
  5. Other NN Architectures
  6. Getting the Most out of PyTorch

商品描述(中文翻譯)

深度學習與 PyTorch 入門,透過建立卷積神經網絡和循環神經網絡,應用於圖像分類、遷移學習和自然語言處理等實際案例。

主要特點
- 清晰簡潔的解釋
- 提供對深度學習模型的重要見解
- 關鍵概念的實用示範

書籍描述
PyTorch 功能強大且易於學習。它提供了先進的功能,例如支持多處理器、分散式和並行計算。本書是希望探索深度學習並利用 PyTorch 強大功能的讀者的絕佳入門書。

本書將介紹 PyTorch 深度學習庫,並教您如何輕鬆訓練深度學習模型。我們將使用 PyTorch 設置深度學習環境,然後訓練和部署不同類型的深度學習模型,如 CNN、RNN 和自編碼器。

您將學習如何通過調整超參數來優化模型,以及如何在多處理器和分散式環境中使用 PyTorch。我們將討論長短期記憶網絡(LSTMs),並建立一個語言模型來預測文本。

在本書結束時,您將熟悉 PyTorch 的功能,並能夠相對輕鬆地利用該庫訓練您的神經網絡。

您將學習的內容
- 使用 PyTorch 庫設置深度學習環境
- 學習建立圖像分類的深度學習模型
- 使用卷積神經網絡進行遷移學習
- 理解如何使用 PyTorch 進行自然語言處理
- 使用循環神經網絡進行文本分類
- 理解如何在多處理器和分散式環境中優化 PyTorch
- 訓練、優化和部署您的神經網絡以達到最佳準確性和性能
- 學習部署生產就緒的模型

本書適合對象
對機器學習有一定了解但對深度學習較新手的開發者和數據科學家,或希望使用 PyTorch 訓練深度學習模型的現有從業者,將會發現本書非常有用。具備 Python 編程知識將是額外的優勢,但不需要先前接觸過 PyTorch。

目錄
1. PyTorch 簡介
2. 深度學習基礎
3. 計算圖與線性模型
4. 卷積網絡
5. 其他神經網絡架構
6. 充分利用 PyTorch