Deep Learning with MXNet Cookbook: Deep dive into a variety of recipes to create and implement AI models on MXNet
暫譯: MXNet 食譜:深入探索各種食譜以在 MXNet 上創建和實現 AI 模型

P. Torres, Andrés

  • 出版商: Packt Publishing
  • 出版日期: 2023-12-29
  • 售價: $2,030
  • 貴賓價: 9.5$1,929
  • 語言: 英文
  • 頁數: 370
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800569602
  • ISBN-13: 9781800569607
  • 相關分類: 人工智慧DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.


Key Features:


  • A step-by-step tutorial towards using MXNet products to create scalable deep learning applications
  • Implement tasks such as transfer learning, transformers, and more with the required speed and scalability
  • Analyze the performance of models and fine-tune them for accuracy, scalability, and speed


Book Description:


MXNet is an open-source deep learning framework that allows you to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in CV, NLP, and more. With this cookbook, you will be able to construct fast, scalable deep learning solutions using Apache MXNet.


This book will start by showing you the different versions of MXNet and what version to choose before installing your library. You will learn to start using MXNet/Gluon libraries to solve classification and regression problems and get an idea on the inner workings of these libraries. This book will also show how to use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. You'll also learn to build and train deep-learning neural network architectures from scratch, before moving on to complex concepts like transfer learning. You'll learn to construct and deploy neural network architectures including CNN, RNN, LSTMs, Transformers, and integrate these models into your applications.


By the end of the book, you will be able to utilize the MXNet and Gluon libraries to create and train deep learning networks using GPUs and learn how to deploy them efficiently in different environments.


What You Will Learn:


  • Understand MXNet and Gluon libraries and their advantages
  • Build and train network models from scratch using MXNet
  • Apply transfer learning for more complex, fine-tuned network architectures
  • Solve modern Computer Vision and NLP problems using neural network techniques
  • Train and evaluate models using GPUs and learn how to deploy them
  • Explore state-of-the-art models with GPUs and leveraging modern optimization techniques
  • Improve inference run-times and deploy models in production


Who this book is for:


This book is ideal for Data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast, scalable deep learning solutions. The reader is expected to have a good understanding of Python programming and a working environment with Python 3.6+. A good theoretical understanding of mathematics for deep learning will be beneficial.

商品描述(中文翻譯)

獲得實用的、基於食譜的深度學習見解,使用 Apache MXNet 進行靈活且高效的研究原型設計、訓練和生產部署。


主要特點:



  • 逐步教程,教你如何使用 MXNet 產品來創建可擴展的深度學習應用程式

  • 以所需的速度和可擴展性實現轉移學習、變壓器等任務

  • 分析模型的性能並進行微調,以提高準確性、可擴展性和速度


書籍描述:


MXNet 是一個開源的深度學習框架,允許您訓練和部署神經網絡模型,並在計算機視覺(CV)、自然語言處理(NLP)等領域實現最先進(SOTA)的架構。通過這本食譜,您將能夠使用 Apache MXNet 構建快速、可擴展的深度學習解決方案。


本書將首先介紹 MXNet 的不同版本以及在安裝庫之前應選擇的版本。您將學會開始使用 MXNet/Gluon 庫來解決分類和回歸問題,並了解這些庫的內部運作。本書還將展示如何使用 MXNet 分析數值回歸、數據分類、圖片分類和文本分類等領域的玩具數據集。您還將學會從零開始構建和訓練深度學習神經網絡架構,然後再深入複雜的概念,如轉移學習。您將學會構建和部署神經網絡架構,包括 CNN、RNN、LSTM、變壓器,並將這些模型整合到您的應用程式中。


在本書結束時,您將能夠利用 MXNet 和 Gluon 庫使用 GPU 創建和訓練深度學習網絡,並學會如何在不同環境中高效部署它們。


您將學到的內容:



  • 了解 MXNet 和 Gluon 庫及其優勢

  • 使用 MXNet 從零開始構建和訓練網絡模型

  • 應用轉移學習以獲得更複雜、微調的網絡架構

  • 使用神經網絡技術解決現代計算機視覺和 NLP 問題

  • 使用 GPU 訓練和評估模型,並學習如何部署它們

  • 探索最先進的模型,利用 GPU 和現代優化技術

  • 改善推理運行時間並在生產中部署模型


本書適合誰:


本書非常適合數據科學家、機器學習工程師和希望使用 Apache MXNet 構建快速、可擴展的深度學習解決方案的開發人員。讀者應具備良好的 Python 編程理解,並擁有 Python 3.6+ 的工作環境。對於深度學習的數學理論有良好的理解將是有益的。

類似商品