Applied Supervised Learning with Python
暫譯: 應用監督式學習與 Python
Johnston, Benjamin, Mathur, Ishita
- 出版商: Packt Publishing
- 出版日期: 2019-04-25
- 售價: $1,830
- 貴賓價: 9.5 折 $1,739
- 語言: 英文
- 頁數: 404
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789954924
- ISBN-13: 9781789954920
-
相關分類:
Python、程式語言
海外代購書籍(需單獨結帳)
相關主題
商品描述
Machine learning—the ability of a machine to give right answers based on input data—has revolutionized the way we do business. Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You'll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support.
With the help of fun examples, you'll gain experience working on the Python machine learning toolkit—from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you’ve grasped the basics, you'll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You'll also learn data visualization techniques using powerful Python libraries such as Matplotlib and Seaborn.
This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data.
By the end of this book, you'll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!
商品描述(中文翻譯)
機器學習——機器根據輸入數據給出正確答案的能力——已經徹底改變了我們的商業運作方式。《使用 Python 的應用監督學習》提供了豐富的理解,讓您了解如何在數據科學項目中應用機器學習技術。您將探索 Jupyter Notebooks,這是一種在學術和商業領域中常用的技術,支持內嵌代碼運行。
透過有趣的範例,您將獲得使用 Python 機器學習工具包的經驗——從執行基本的數據清理和處理,到使用各種回歸和分類算法。一旦掌握了基礎,您將學習如何使用決策樹、集成建模、驗證和錯誤指標等高級技術來構建和訓練自己的模型。您還將學習使用強大的 Python 庫,如 Matplotlib 和 Seaborn 進行數據可視化技術。
本書還涵蓋了集成建模和隨機森林分類器,以及其他結合多個模型結果的方法,並以深入探討交叉驗證作為結尾,以測試您的算法並檢查模型在未見數據上的表現。
在本書結束時,您將具備不僅能夠使用機器學習算法的能力,還能創建一些自己的算法!