Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models (Paperback)
暫譯: 使用 Python 進行串流數據的實用機器學習:設計、開發與驗證在線學習模型 (平裝本)

Putatunda, Sayan

  • 出版商: Apress
  • 出版日期: 2021-04-09
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 120
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484268660
  • ISBN-13: 9781484268667
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights.

You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.

Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.


What You'll Learn

  • Understand machine learning with streaming data concepts
  • Review incremental and online learning
  • Develop models for detecting concept drift
  • Explore techniques for classification, regression, and ensemble learning in streaming data contexts
  • Apply best practices for debugging and validating machine learning models in streaming data context
  • Get introduced to other open-source frameworks for handling streaming data.

Who This Book Is For
Machine learning engineers and data science professionals

商品描述(中文翻譯)

設計、開發和驗證使用 Scikit-Multiflow 框架的流式數據機器學習模型。本書是一本快速入門指南,適合希望使用 Python 實現流式數據機器學習模型以生成實時洞察的數據科學家和機器學習工程師。

您將從流式數據的介紹開始,了解與之相關的各種挑戰、一些實際的商業應用以及各種窗口技術。接著,您將研究增量學習和在線學習算法,以及流式數據的模型評估概念,並介紹 Python 中的 Scikit-Multiflow 框架。隨後,將回顧各種變化檢測/概念漂移檢測算法,並使用 Scikit-Multiflow 實現各種數據集。

本書還涵蓋了各種監督式和非監督式算法在流式數據上的應用,以及它們在各種數據集上的實現。最後,本書簡要介紹了其他可用於流式數據的開源工具,如 Spark、MOA(大規模在線分析)、Kafka 等。



**您將學到的內容**

- 理解流式數據的機器學習概念
- 回顧增量學習和在線學習
- 開發檢測概念漂移的模型
- 探索流式數據上下文中的分類、回歸和集成學習技術
- 應用流式數據上下文中調試和驗證機器學習模型的最佳實踐
- 了解其他處理流式數據的開源框架。

**本書適合誰閱讀**
機器學習工程師和數據科學專業人士

作者簡介

Dr. Sayan Putatunda is an experienced data scientist and researcher. He holds a Ph.D. in Applied Statistics/ Machine Learning from the Indian Institute of Management, Ahmedabad (IIMA) where his research was on streaming data and its applications in the transportation industry. He has a rich experience of working in both senior individual contributor and managerial roles in the data science industry with multiple companies such as Amazon, VMware, Mu Sigma, and more. His research interests are in streaming data, deep learning, machine learning, spatial point processes, and directional statistics. As a researcher, he has multiple publications in top international peer-reviewed journals with reputed publishers. He has presented his work at various reputed international machine learning and statistics conferences. He is also a member of IEEE.

 

作者簡介(中文翻譯)

Dr. Sayan Putatunda 是一位經驗豐富的數據科學家和研究員。他擁有印度管理學院艾哈邁達巴德分校(IIMA)應用統計學/機器學習的博士學位,研究主題為串流數據及其在交通運輸行業的應用。他在數據科學行業擁有豐富的經驗,曾在多家公司擔任高級個人貢獻者和管理職位,包括 Amazon、VMware、Mu Sigma 等。他的研究興趣包括串流數據、深度學習、機器學習、空間點過程和方向統計學。作為研究員,他在多本知名國際同行評審期刊上發表了多篇論文,並與知名出版商合作。他曾在多個知名的國際機器學習和統計學會議上展示他的研究成果。他也是 IEEE 的成員。