Machine Learning Engineering with MLflow: Manage the end-to-end machine learning life cycle with MLflow
暫譯: 使用 MLflow 的機器學習工程:管理端到端的機器學習生命週期
Lauchande, Natu
- 出版商: Packt Publishing
- 出版日期: 2021-08-27
- 售價: $1,480
- 貴賓價: 9.5 折 $1,406
- 語言: 英文
- 頁數: 248
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800560796
- ISBN-13: 9781800560796
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$520$411 -
$490$417 -
$500$250 -
$520$411 -
$880$695 -
$1,680$1,596
相關主題
商品描述
Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach
Key Features:
- Explore machine learning workflows for stating ML problems in a concise and clear manner using MLflow
- Use MLflow to iteratively develop a ML model and manage it
- Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environment
Book Description:
MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments.
This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you'll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins.
By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments.
What You Will Learn:
- Develop your machine learning project locally with MLflow's different features
- Set up a centralized MLflow tracking server to manage multiple MLflow experiments
- Create a model life cycle with MLflow by creating custom models
- Use feature streams to log model results with MLflow
- Develop the complete training pipeline infrastructure using MLflow features
- Set up an inference-based API pipeline and batch pipeline in MLflow
- Scale large volumes of data by integrating MLflow with high-performance big data libraries
Who this book is for:
This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected.
商品描述(中文翻譯)
快速上手並高效運用 MLflow,採用最有效的機器學習工程方法
主要特點:
- 使用 MLflow 探索機器學習工作流程,以簡潔明瞭的方式陳述機器學習問題
- 使用 MLflow 迭代開發機器學習模型並進行管理
- 發現並使用 MLflow 中可用的功能,無縫地將模型從開發階段轉移到生產環境
書籍描述:
MLflow 是一個機器學習生命週期的平台,能夠結構化地開發和迭代機器學習模型,並無縫過渡到可擴展的生產環境。
本書將帶您了解 MLflow 的不同功能,以及如何在您的機器學習專案中實施這些功能。您將從框定一個機器學習問題開始,然後利用 MLflow 轉化您的解決方案,添加工作台環境、訓練基礎設施、數據管理、模型管理、實驗以及最先進的機器學習部署技術,無論是在雲端還是本地。書中還探討了擴展工作流程的技術以及性能監控技術。隨著進展,您將發現如何創建操作儀表板來管理機器學習系統。之後,您將學習如何在 AutoML、異常檢測和深度學習的背景下使用 MLflow,並通過案例研究來輔助理解。此外,您將了解如何在本地開發以及雲端和管理環境中使用機器學習平台。本書還將展示如何在非 Python 語言(如 R 和 Java)中使用 MLflow,並涵蓋如何通過插件擴展 MLflow 的方法。
在這本機器學習書籍結束時,您將能夠在多個環境中使用 MLflow 生成和部署可靠的機器學習算法。
您將學到的內容:
- 使用 MLflow 的不同功能在本地開發您的機器學習專案
- 設置集中式 MLflow 追蹤伺服器以管理多個 MLflow 實驗
- 通過創建自定義模型來使用 MLflow 創建模型生命週期
- 使用特徵流記錄模型結果
- 使用 MLflow 功能開發完整的訓練管道基礎設施
- 在 MLflow 中設置基於推斷的 API 管道和批次管道
- 通過將 MLflow 與高性能大數據庫集成來擴展大量數據