Cloud Scale Analytics with Azure Data Services: Build modern data warehouses on Microsoft Azure
暫譯: 使用 Azure 數據服務進行雲端規模分析:在 Microsoft Azure 上構建現代數據倉庫

Borosch, Patrik

  • 出版商: Packt Publishing
  • 出版日期: 2021-07-23
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 520
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800562934
  • ISBN-13: 9781800562936
  • 相關分類: Microsoft Azure
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Key Features

  • Store and analyze data with enterprise-grade security and auditing
  • Perform batch, streaming, and interactive analytics to optimize your big data solutions with ease
  • Develop and run parallel data processing programs using real-world enterprise scenarios

Book Description

Azure Data Lake, the modern data warehouse architecture, and related data services on Azure enable organizations to build their own customized analytical platform to fit any analytical requirements in terms of volume, speed, and quality.

This book is your guide to learning all the features and capabilities of Azure data services for storing, processing, and analyzing data (structured, unstructured, and semi-structured) of any size. You will explore key techniques for ingesting and storing data and perform batch, streaming, and interactive analytics. The book also shows you how to overcome various challenges and complexities relating to productivity and scaling. Next, you will be able to develop and run massive data workloads to perform different actions. Using a cloud-based big data-modern data warehouse-analytics setup, you will also be able to build secure, scalable data estates for enterprises. Finally, you will not only learn how to develop a data warehouse but also understand how to create enterprise-grade security and auditing big data programs.

By the end of this Azure book, you will have learned how to develop a powerful and efficient analytical platform to meet enterprise needs.

What you will learn

  • Implement data governance with Azure services
  • Use integrated monitoring in the Azure Portal and integrate Azure Data Lake Storage into the Azure Monitor
  • Explore the serverless feature for ad-hoc data discovery, logical data warehousing, and data wrangling
  • Implement networking with Synapse Analytics and Spark pools
  • Create and run Spark jobs with Databricks clusters
  • Implement streaming using Azure Functions, a serverless runtime environment on Azure
  • Explore the predefined ML services in Azure and use them in your app

Who this book is for

This book is for data architects, ETL developers, or anyone who wants to get well-versed with Azure data services to implement an analytical data estate for their enterprise. The book will also appeal to data scientists and data analysts who want to explore all the capabilities of Azure data services, which can be used to store, process, and analyze any kind of data. A beginner-level understanding of data analysis and streaming will be required.

商品描述(中文翻譯)

**主要特點**

- 以企業級安全性和審計功能存儲和分析數據
- 輕鬆執行批量、串流和互動分析,以優化您的大數據解決方案
- 使用真實的企業場景開發和運行平行數據處理程序

**書籍描述**

Azure Data Lake,現代數據倉庫架構及其相關數據服務,讓組織能夠建立自訂的分析平台,以滿足在數據量、速度和質量方面的任何分析需求。

本書是您學習 Azure 數據服務的所有功能和能力的指南,這些服務可用於存儲、處理和分析任何大小的數據(結構化、非結構化和半結構化)。您將探索數據攝取和存儲的關鍵技術,並執行批量、串流和互動分析。本書還將向您展示如何克服與生產力和擴展性相關的各種挑戰和複雜性。接下來,您將能夠開發和運行大量數據工作負載以執行不同的操作。使用基於雲端的大數據-現代數據倉庫-分析設置,您還將能夠為企業建立安全、可擴展的數據資產。最後,您不僅會學習如何開發數據倉庫,還會了解如何創建企業級安全性和審計的大數據程序。

在本書結束時,您將學會如何開發一個強大且高效的分析平台,以滿足企業需求。

**您將學到的內容**

- 使用 Azure 服務實施數據治理
- 在 Azure 入口網站中使用集成監控,並將 Azure Data Lake Storage 整合到 Azure Monitor 中
- 探索無伺服器功能以進行即時數據發現、邏輯數據倉庫和數據處理
- 使用 Synapse Analytics 和 Spark 池實施網絡
- 使用 Databricks 集群創建和運行 Spark 作業
- 使用 Azure Functions 實施串流,這是一個在 Azure 上的無伺服器運行環境
- 探索 Azure 中的預定義機器學習服務並在您的應用中使用它們

**本書適合誰**

本書適合數據架構師、ETL 開發人員或任何希望熟悉 Azure 數據服務以實施分析數據資產的企業人士。本書也將吸引希望探索 Azure 數據服務所有功能的數據科學家和數據分析師,這些服務可用於存儲、處理和分析任何類型的數據。需要具備初級的數據分析和串流理解。

作者簡介

Patrik Borosch is a Cloud Solution Architect for Data and AI at Microsoft Switzerland GmbH. He has more than 25 years of BI and analytics development, engineering, and architecture experience and is a Microsoft Certified Data Engineer and a Microsoft Certified AI Engineer. Patrik has worked on numerous significant international Data Warehouse, Data Integration and Big Data projects. There, he has built and extended his experience in all facets from requirement engineering over data modelling and ETL all the way to reporting and dashboarding. At Microsoft Switzerland, he supports customers in their journey into the analytical world of Azure Cloud.

作者簡介(中文翻譯)

Patrik Borosch 是微軟瑞士有限公司的雲端解決方案架構師,專注於數據和人工智慧。他擁有超過 25 年的商業智慧 (BI) 和分析開發、工程及架構經驗,並且是微軟認證的數據工程師和微軟認證的人工智慧工程師。Patrik 曾參與多個重要的國際數據倉儲、數據整合和大數據專案。在這些專案中,他在需求工程、數據建模、ETL 以及報告和儀表板等各個方面積累了豐富的經驗。在微軟瑞士,他協助客戶進入 Azure 雲端的分析世界。

目錄大綱

  1. Balancing the benefits of Data Lakes over Data Warehouses
  2. The Modern Data Warehouse and Azure Data Services
  3. Understanding the Data Lake Storage Layer
  4. Relational Storage components: Synapse SQL Pools, SQL DB, Azure Databases
  5. Data integration enterprise grade and even code-free
  6. Spark on Azure: Synapse Spark Pools
  7. Spark on Azure: Databricks
  8. Streaming
  9. Azure Cognitive Services / Azure Machine Learning
  10. Machine Learning with Spark on Azure: Synapse Spark Pools / Azure Databricks
  11. Synapse SQL Pools / Synapse Analytics
  12. Analysis Service / Power BI / Data Share
  13. Industry Data Models
  14. Data Governance

目錄大綱(中文翻譯)


  1. Balancing the benefits of Data Lakes over Data Warehouses

  2. The Modern Data Warehouse and Azure Data Services

  3. Understanding the Data Lake Storage Layer

  4. Relational Storage components: Synapse SQL Pools, SQL DB, Azure Databases

  5. Data integration enterprise grade and even code-free

  6. Spark on Azure: Synapse Spark Pools

  7. Spark on Azure: Databricks

  8. Streaming

  9. Azure Cognitive Services / Azure Machine Learning

  10. Machine Learning with Spark on Azure: Synapse Spark Pools / Azure Databricks

  11. Synapse SQL Pools / Synapse Analytics

  12. Analysis Service / Power BI / Data Share

  13. Industry Data Models

  14. Data Governance