Machine Learning on Kubernetes: A practical handbook for building and using a complete open source machine learning platform on Kubernetes
暫譯: Kubernetes 上的機器學習:構建和使用完整開源機器學習平台的實用手冊

Masood, Faisal, Brigoli, Ross

  • 出版商: Packt Publishing
  • 出版日期: 2022-06-24
  • 售價: $2,130
  • 貴賓價: 9.5$2,024
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803241802
  • ISBN-13: 9781803241807
  • 相關分類: KubernetesMachine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Build a Kubernetes-based self-serving, agile data science and machine learning ecosystem for your organization using reliable and secure open source technologies

Key Features

- Build a complete machine learning platform on Kubernetes
- Improve the agility and velocity of your team by adopting the self-service capabilities of the platform
- Reduce time-to-market by automating data pipelines and model training and deployment

Book Description

MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver business value for their organization.

You'll begin by understanding the different components of a machine learning project. Then, you'll design and build a practical end-to-end machine learning project using open source software. As you progress, you'll understand the basics of MLOps and the value it can bring to machine learning projects. You will also gain experience in building, configuring, and using an open source, containerized machine learning platform. In later chapters, you will prepare data, build and deploy machine learning models, and automate workflow tasks using the same platform. Finally, the exercises in this book will help you get hands-on experience in Kubernetes and open source tools, such as JupyterHub, MLflow, and Airflow.

By the end of this book, you'll have learned how to effectively build, train, and deploy a machine learning model using the machine learning platform you built.

What you will learn

- Understand the different stages of a machine learning project
- Use open source software to build a machine learning platform on Kubernetes
- Implement a complete ML project using the machine learning platform presented in this book
- Improve on your organization's collaborative journey toward machine learning
- Discover how to use the platform as a data engineer, ML engineer, or data scientist
- Find out how to apply machine learning to solve real business problems

Who this book is for

This book is for data scientists, data engineers, IT platform owners, AI product owners, and data architects who want to build their own platform for ML development. Although this book starts with the basics, a solid understanding of Python and Kubernetes, along with knowledge of the basic concepts of data science and data engineering will help you grasp the topics covered in this book in a better way.

商品描述(中文翻譯)

建立基於 Kubernetes 的自助式、敏捷數據科學和機器學習生態系統,為您的組織使用可靠且安全的開源技術

主要特點

- 在 Kubernetes 上建立完整的機器學習平台
- 通過採用平台的自助服務功能,提高團隊的敏捷性和速度
- 通過自動化數據管道和模型訓練及部署,縮短上市時間

書籍描述

MLOps 是一個新興領域,旨在將軟體工程領域的可重複性、自動化和標準化帶入數據科學和機器學習工程。通過在 Kubernetes 上實施 MLOps,數據科學家、IT 專業人員和數據工程師可以協作並構建提供商業價值的機器學習解決方案。

您將首先了解機器學習項目的不同組件。然後,您將設計並構建一個使用開源軟體的實用端到端機器學習項目。隨著進展,您將了解 MLOps 的基本概念及其對機器學習項目的價值。您還將獲得構建、配置和使用開源容器化機器學習平台的經驗。在後面的章節中,您將準備數據、構建和部署機器學習模型,並使用相同的平台自動化工作流程任務。最後,本書中的練習將幫助您獲得在 Kubernetes 和開源工具(如 JupyterHub、MLflow 和 Airflow)中的實踐經驗。

到本書結束時,您將學會如何有效地構建、訓練和部署使用您所建立的機器學習平台的機器學習模型。

您將學到的內容

- 了解機器學習項目的不同階段
- 使用開源軟體在 Kubernetes 上構建機器學習平台
- 使用本書中介紹的機器學習平台實施完整的 ML 項目
- 改善您組織在機器學習方面的協作旅程
- 探索如何作為數據工程師、機器學習工程師或數據科學家使用該平台
- 瞭解如何應用機器學習來解決實際商業問題

本書適合誰

本書適合希望為 ML 開發建立自己平台的數據科學家、數據工程師、IT 平台擁有者、AI 產品擁有者和數據架構師。雖然本書從基礎開始,但對 Python 和 Kubernetes 的扎實理解,以及對數據科學和數據工程基本概念的知識,將幫助您更好地掌握本書所涵蓋的主題。

目錄大綱

1. Challenges in Machine Learning
2. Understanding MLOps
3. Exploring Kubernetes
4. The Anatomy of a Machine Learning Platform
5. Data Engineering
6. Machine Learning Engineering
7. Model Deployment and Automation
8. Building a Complete ML Project Using the Platform
9. Building Your Data Pipeline
10. Building, Deploying and Monitoring Your Model
11. Machine Learning on Kubernetes

目錄大綱(中文翻譯)

1. Challenges in Machine Learning

2. Understanding MLOps

3. Exploring Kubernetes

4. The Anatomy of a Machine Learning Platform

5. Data Engineering

6. Machine Learning Engineering

7. Model Deployment and Automation

8. Building a Complete ML Project Using the Platform

9. Building Your Data Pipeline

10. Building, Deploying and Monitoring Your Model

11. Machine Learning on Kubernetes