Synthetic Data for Machine Learning: Revolutionize your approach to machine learning with this comprehensive conceptual guide
Kerim, Abdulrahman
- 出版商: Packt Publishing
- 出版日期: 2023-10-27
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 208
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803245409
- ISBN-13: 9781803245409
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies
Key Features:
- Avoid common data issues by identifying and solving them using synthetic data-based solutions
- Master synthetic data generation approaches to prepare for the future of machine learning
- Enhance performance, reduce budget, and stand out from competitors using synthetic data
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges.
This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You'll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you'll uncover the secrets and best practices to harness the full potential of synthetic data.
By the end of this book, you'll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.
What You Will Learn:
- Understand real data problems, limitations, drawbacks, and pitfalls
- Harness the potential of synthetic data for data-hungry ML models
- Discover state-of-the-art synthetic data generation approaches and solutions
- Uncover synthetic data potential by working on diverse case studies
- Understand synthetic data challenges and emerging research topics
- Apply synthetic data to your ML projects successfully
Who this book is for:
If you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.
商品描述(中文翻譯)
征服數據障礙,加速您的機器學習之旅,並通過合成數據生成技術、最佳實踐和案例研究成為您領域的領導者。
主要特點:
- 通過識別和解決常見的數據問題,避免常見的數據問題,並使用基於合成數據的解決方案解決它們
- 掌握合成數據生成方法,為機器學習的未來做好準備
- 使用合成數據提高性能,降低預算,並在競爭對手中脫穎而出
- 購買印刷版或Kindle電子書,即可獲得免費的PDF電子書
書籍描述:
機器學習(ML)革命使我們的世界無法想像沒有其產品和服務。然而,訓練ML模型需要大量數據集,這涉及到一個過程,其中高成本、錯誤和隱私問題與收集和標註真實數據相關。合成數據成為解決所有這些挑戰的有希望的解決方案。
本書旨在搭建使用合成數據的理論和實踐之間的橋樑,為您的機器學習之旅提供寶貴的支持。《機器學習的合成數據》使您能夠應對真實數據問題,提高您的ML模型性能,並深入了解合成數據生成。您將探索各種方法的優點和缺點,通過現代方法的實際示例(包括生成對抗網絡(GAN)和擴散模型)獲得實踐知識。此外,您還將揭示利用合成數據的秘訣和最佳實踐,充分發揮合成數據的潛力。
通過閱讀本書,您將掌握合成數據的技能,並將自己定位為市場領導者,為下一代ML做好準備,使用更先進、成本效益更高、質量更高的數據來源,使您在同行中處於領先地位。
您將學到什麼:
- 了解真實數據的問題、限制、缺點和陷阱
- 利用合成數據發揮數據飢渴的ML模型的潛力
- 發現最先進的合成數據生成方法和解決方案
- 通過多個案例研究了解合成數據的潛力
- 了解合成數據的挑戰和新興研究主題
- 成功應用合成數據於您的ML項目
本書適合對象:
如果您是一位想要克服數據問題的機器學習(ML)從業者或研究人員,本書適合您。需要具備ML和Python編程的基礎知識。本書是該主題的先驅之作,為ML工程師、研究人員、公司和決策者提供領先的支持。