Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more (Paperback)
暫譯: Python中的因果推斷與發現:利用DoWhy、EconML、PyTorch等解鎖現代因果機器學習的秘密(平裝本)

Molak, Aleksander

買這商品的人也買了...

相關主題

商品描述

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data

Purchase of the print or Kindle book includes a free PDF eBook

 

Key Features:

  • Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more
  • Discover modern causal inference techniques for average and heterogenous treatment effect estimation
  • Explore and leverage traditional and modern causal discovery methods

 

Book Description:

Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.

You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code.

Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how "causes leave traces" and compare the main families of causal discovery algorithms.

The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.

 

What You Will Learn:

  • Master the fundamental concepts of causal inference
  • Decipher the mysteries of structural causal models
  • Unleash the power of the 4-step causal inference process in Python
  • Explore advanced uplift modeling techniques
  • Unlock the secrets of modern causal discovery using Python
  • Use causal inference for social impact and community benefit

 

Who this book is for:

This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It's also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.

商品描述(中文翻譯)

揭開因果推斷和因果發現的神秘面紗,通過揭示因果原則並將其與強大的機器學習算法結合,應用於觀察性和實驗數據

購買印刷版或 Kindle 版書籍可獲得免費 PDF 電子書

主要特色:


  • 檢視 Pearlian 因果概念,如結構因果模型、干預、反事實等

  • 發現現代因果推斷技術,用於平均和異質處理效果的估計

  • 探索並利用傳統與現代的因果發現方法

書籍描述:

因果方法相比於傳統的機器學習和統計學提出了獨特的挑戰。學習因果關係可能會很具挑戰性,但它提供了純粹統計思維所無法獲得的獨特優勢。《Python 中的因果推斷與發現》幫助你解鎖因果關係的潛力。

你將從因果思維的基本動機開始,並全面介紹 Pearlian 因果概念,如結構因果模型、干預、反事實等。每個概念都附有理論解釋和一組實用的 Python 代碼練習。

接下來,你將深入因果效果估計的世界,逐步進入現代機器學習方法。你將逐步發現 Python 的因果生態系統,並利用尖端算法的力量。你還將進一步探索「因果留下痕跡」的機制,並比較主要的因果發現算法家族。

最後一章將為你提供因果 AI 的未來展望,檢視挑戰與機會,並提供一份全面的資源清單,讓你能進一步學習。

你將學到什麼:


  • 掌握因果推斷的基本概念

  • 解讀結構因果模型的奧秘

  • 在 Python 中釋放 4 步驟因果推斷過程的力量

  • 探索先進的提升建模技術

  • 使用 Python 解鎖現代因果發現的秘密

  • 利用因果推斷促進社會影響和社區利益

本書適合誰:

本書適合機器學習工程師、數據科學家和希望擴展其數據科學工具包並探索因果機器學習的研究人員。它也將幫助熟悉因果關係的開發者,這些開發者曾在其他技術領域工作並希望轉向 Python,以及有傳統因果背景的數據科學家,想要學習因果機器學習的讀者。此外,對於希望為其產品建立競爭優勢並超越傳統機器學習限制的科技創業者來說,這本書也是必讀之作。