Hands-On Simulation Modeling with Python - Second Edition: Develop simulation models for improved efficiency and precision in the decision-making proc
暫譯: 使用 Python 進行實作模擬建模 - 第二版:開發模擬模型以提高決策過程中的效率和精確性

Ciaburro, Giuseppe

  • 出版商: Packt Publishing
  • 出版日期: 2022-11-30
  • 售價: $1,800
  • 貴賓價: 9.5$1,710
  • 語言: 英文
  • 頁數: 460
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1804616885
  • ISBN-13: 9781804616888
  • 相關分類: Python程式語言
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Learn to construct state-of-the-art simulation models with Python and enhance your simulation modelling skills, as well as create and analyze digital prototypes of physical models with ease


Key Features:

  • Understand various statistical and physical simulations to improve systems using Python
  • Learn to create the numerical prototype of a real model using hands-on examples
  • Evaluate performance and output results based on how the prototype would work in the real world


Book Description:

Simulation modelling is an exploration method that aims to imitate physical systems in a virtual environment and retrieve useful statistical inferences from it. The ability to analyze the model as it runs sets simulation modelling apart from other methods used in conventional analyses. This book is your comprehensive and hands-on guide to understanding various computational statistical simulations using Python.

The book begins by helping you get familiarized with the fundamental concepts of simulation modelling, that'll enable you to understand the various methods and techniques needed to explore complex topics. Data scientists working with simulation models will be able to put their knowledge to work with this practical guide. As you advance, you'll dive deep into numerical simulation algorithms, including an overview of relevant applications, with the help of real-world use cases and practical examples. You'll also find out how to use Python to develop simulation models and how to use several Python packages. Finally, you'll get to grips with various numerical simulation algorithms and concepts, such as Markov Decision Processes, Monte Carlo methods, and bootstrapping techniques.

By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges.


What You Will Learn:

  • Get to grips with the concept of randomness and the data generation process
  • Delve into resampling methods
  • Discover how to work with Monte Carlo simulations
  • Utilize simulations to improve or optimize systems
  • Find out how to run efficient simulations to analyze real-world systems
  • Understand how to simulate random walks using Markov chains


Who this book is for:

This book is for data scientists, simulation engineers, and anyone who is already familiar with the basic computational methods and wants to implement various simulation techniques such as Monte-Carlo methods and statistical simulation using Python.

商品描述(中文翻譯)

學習使用 Python 構建最先進的模擬模型,提升您的模擬建模技能,並輕鬆創建和分析物理模型的數位原型。

主要特點:
- 理解各種統計和物理模擬,以使用 Python 改進系統
- 學習使用實作範例創建真實模型的數值原型
- 根據原型在現實世界中的運作評估性能和輸出結果

書籍描述:
模擬建模是一種探索方法,旨在在虛擬環境中模擬物理系統並從中獲取有用的統計推論。能夠在模型運行時進行分析,使模擬建模與傳統分析中使用的其他方法區別開來。本書是您理解使用 Python 進行各種計算統計模擬的全面且實用的指南。

本書首先幫助您熟悉模擬建模的基本概念,使您能夠理解探索複雜主題所需的各種方法和技術。從事模擬模型的數據科學家將能夠利用這本實用指南將其知識付諸實踐。隨著進展,您將深入了解數值模擬算法,包括相關應用的概述,並通過真實案例和實際範例進行學習。您還將了解如何使用 Python 開發模擬模型以及如何使用多個 Python 套件。最後,您將掌握各種數值模擬算法和概念,例如馬可夫決策過程、蒙地卡羅方法和自助法技術。

在本書結束時,您將學會如何構建和部署自己的模擬模型,以克服現實世界的挑戰。

您將學到的內容:
- 理解隨機性和數據生成過程的概念
- 深入探討重抽樣方法
- 發現如何使用蒙地卡羅模擬
- 利用模擬來改善或優化系統
- 瞭解如何運行高效的模擬以分析現實世界系統
- 理解如何使用馬可夫鏈模擬隨機漫步

本書適合對象:
本書適合數據科學家、模擬工程師以及任何已經熟悉基本計算方法並希望使用 Python 實現各種模擬技術(如蒙地卡羅方法和統計模擬)的人士。