Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs
Auffarth, Ben
買這商品的人也買了...
-
$1,225Crafting a Compiler (IE-Paperback)
-
$1,920$1,824 -
$2,518Applied Cryptography: Protocols, Algorithms and Source Code in C 20th Anniversary Edition
-
$1,260$1,235 -
$3,150$2,993 -
$534$507 -
$1,700$1,700 -
$1,758$1,665 -
$4,620$4,389 -
$2,980$2,831 -
$1,568$1,485 -
$320$288 -
$1,400$1,372 -
$4,500$4,410 -
$2,070Multithreaded JavaScript: Concurrency Beyond the Event Loop
-
$4,500$4,275 -
$1,180$1,156 -
$607現代密碼學及其應用
-
$1,710Functional Design: Principles, Patterns, and Practices (Paperback)
-
$3,420Deep Learning: Foundations and Concepts (Hardcover)
-
$1,615Coding Art: A Guide to Unlocking Your Creativity with the Processing Language and P5.Js in Four Simple Steps
-
$534$507 -
$880$695 -
$680$537 -
$750$585
商品描述
Get to grips with the LangChain framework to develop production-ready applications, including agents and personal assistants, integrating with web searches and code execution.
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
- GitHub repository updated regularly to stay abreast of LangChain developments
- Delve into the realm of LLMs with LangChain and go on an in-depth exploration of their fundamentals, ethical dimensions, and application challenges
- Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality
Book Description:
The ChatGPT and the GPT models by OpenAI have brought about a revolution in the way we think about the world - and not only in how we write and research, but in how we can process information.
This book discusses the functioning, capabilities, and limitations of LLMs including ChatGPT and Bard. It also demonstrates how to use the LangChain framework to implement production-ready applications based on these models, such as agents and personal assistants, and integrate with other tools such as web searches and code execution.
As you progress through the chapters, you'll use transformer models and diverse attention mechanisms, refining the intricate process of training and fine-tuning. You'll get to grips with data-driven decision-making with automated analysis and visualization using pandas and Python. You'll also take a closer look at the heuristics of how to use these models, prompting, training and fine-tuning, and deploying at scale.
By the time you've finished this book, you'll have a deep understanding of what makes LLMs tick and how to make the most of them.
What You Will Learn:
- Gain an understanding of LLMs and their legal implications
- Understand transformer models and different attention mechanisms
- Train and fine-tune LLMs and get to know the tools for using them
- Build applications with LangChain like question-answering systems and chatbots
- Implement automated data analysis and visualization with pandas and Python
- Grasp prompt engineering to improve prompts and evaluation strategies
- Deploy LLMs as a service with LangChain
- Interact privately with your documents without data leaks using ChatGPT
Who this book is for:
The book is for developers, researchers, and anyone interested in learning more about LLMs. Whether you are a beginner or an experienced developer, this book will be a valuable resource if you want to get the most out of LLMs and are looking to stay ahead of the curve in the LLMs and LangChain arena.
Basic knowledge of Python is a prerequisite, while some prior exposure to machine learning will help you follow along more easily.
商品描述(中文翻譯)
掌握LangChain框架,開發可投入生產的應用程式,包括代理人和個人助理,並與網路搜尋和程式碼執行整合。
購買印刷版或Kindle書籍,即可免費獲得PDF電子書。
主要特點:
- 定期更新GitHub存儲庫,以跟上LangChain的發展
- 深入探索LLMs的領域,瞭解其基礎知識、倫理維度和應用挑戰
- 從啟發法和訓練到可擴展部署,提升使用ChatGPT和GPT模型的能力,讓您能夠將想法轉化為現實
書籍描述:
OpenAI的ChatGPT和GPT模型在我們思考世界的方式上帶來了一場革命,不僅改變了我們的寫作和研究方式,還改變了我們處理信息的方式。
本書討論了LLMs(如ChatGPT和Bard)的功能、能力和限制。它還演示了如何使用LangChain框架來實現基於這些模型的可投入生產的應用程式,例如代理人和個人助理,並與其他工具(如網路搜尋和程式碼執行)整合。
隨著您逐步閱讀本書,您將使用變形器模型和多樣化的注意機制,進一步完善訓練和微調的複雜過程。您將深入瞭解使用pandas和Python進行自動化分析和可視化的數據驅動決策。您還將更仔細地研究如何使用這些模型的啟發法,以及提示、訓練和大規模部署。
通過閱讀本書,您將深入瞭解LLMs的運作原理,並學會充分利用它們的方法。
學到什麼:
- 瞭解LLMs及其法律意義
- 理解變形器模型和不同的注意機制
- 訓練和微調LLMs,並瞭解使用它們的工具
- 使用LangChain構建應用程式,如問答系統和聊天機器人
- 使用pandas和Python實現自動化數據分析和可視化
- 掌握提示工程,改進提示和評估策略
- 使用LangChain將LLMs部署為服務
- 使用ChatGPT在不洩露數據的情況下與文件進行私密互動
本書適合開發人員、研究人員和對LLMs有興趣的任何人。無論您是初學者還是有經驗的開發人員,如果您想充分利用LLMs並在LLMs和LangChain領域保持領先地位,本書將是一個寶貴的資源。
需要具備Python的基本知識,並且對機器學習有一些先前的接觸將有助於更容易地跟隨內容。