Deep Learning for Natural Language Processing
暫譯: 自然語言處理的深度學習
Bokka, Karthiek Reddy, Hora, Shubhangi, Jain, Tanuj
- 出版商: Packt Publishing
- 出版日期: 2019-06-07
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 372
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838550291
- ISBN-13: 9781838550295
-
相關分類:
DeepLearning
-
相關翻譯:
基於深度學習的自然語言處理 (簡中版)
相關主題
商品描述
Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts by highlighting the basic building blocks of the natural language processing domain.
The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.
By the end of this book, you will not only have sound knowledge of natural language processing, but also be able to select the best text preprocessing and neural network models to solve a number of NLP issues. |
商品描述(中文翻譯)
應用深度學習方法於各種自然語言處理(NLP)任務,可以使您的計算演算法在速度和準確性上達到全新的水平。《深度學習與自然語言處理》一書首先強調了自然語言處理領域的基本構建塊。
本書接著介紹了您可以使用最先進的神經網絡模型解決的問題。在此之後,深入探討各種神經網絡架構及其特定應用領域,將幫助您理解如何選擇最適合您需求的模型。隨著您在這本深度學習書籍中的進展,您將學習卷積神經網絡(CNN)、遞歸神經網絡(RNN)和遞歸神經網絡的變體,並涵蓋長短期記憶網絡(LSTM)。理解這些網絡將幫助您使用 Keras 實現它們的模型。在後面的章節中,您將能夠開發一個觸發詞檢測應用,使用如注意力模型和束搜索等 NLP 技術。
到本書結束時,您不僅將對自然語言處理有扎實的知識,還能選擇最佳的文本預處理和神經網絡模型來解決多個 NLP 問題。