PyTorch Deep Learning Hands-On: Apply modern AI techniques with CNNs, RNNs, GANs, reinforcement learning, and more
暫譯: PyTorch 深度學習實戰:應用現代 AI 技術於 CNN、RNN、GAN、強化學習等領域
Sherin Thomas
- 出版商: Packt Publishing
- 出版日期: 2019-04-26
- 定價: $1,600
- 售價: 8.0 折 $1,280
- 語言: 英文
- 頁數: 304
- 裝訂: Paperback
- ISBN: 1788834135
- ISBN-13: 9781788834131
-
相關分類:
DeepLearning
-
相關翻譯:
PyTorch 深度學習實戰 (簡中版)
立即出貨
買這商品的人也買了...
-
$968Real-Time Communication with WebRTC: Peer-to-Peer in the Browser (Paperback)
-
$680$537 -
$403深度學習 : Caffe 之經典模型詳解與實戰
-
$1,830$1,739 -
$1,088Deep Learning with TensorFlow - Second Edition: Explore neural networks with Python
-
$1,184Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
-
$880$695 -
$320$288 -
$560$442 -
$1,950$1,853 -
$680$537 -
$500$450 -
$301精通特徵工程 (Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists)
-
$580$458 -
$602Boost 程序庫完全開發指南 ― 深入 C++ ”準”標準庫, 5/e
-
$709奔跑吧 Linux 內核 (捲1):基礎架構, 2/e
-
$658奔跑吧 Linux 內核入門篇, 2/e
-
$560奔跑吧 Linux 內核 (捲2):調試與案例分析, 2/e
-
$599$473 -
$587MATLAB 2020 信號處理從入門到精通
-
$599$473 -
$1,194$1,134 -
$1,200$948 -
$894$849 -
$594$564
相關主題
商品描述
Developing image analysis apps, GAN-based networks, reinforcement learning algorithms and text engineering routines with Deep Learning PyTorch applications
Key Features
- The first book-length introduction to PyTorch
- Covers the whole range of possible applications that can be written on PyTorch
- Focuses on the APIs, and treats algorithms as secondary
Book Description
Deep Learning is probably the fastest-growing, but also the most complex area of applied computing today. There are two major frameworks dominating the Deep Learning API landscape - Google's TensorFlow, and Facebook's PyTorch. Deriving from the open source Torch framework written in Lua, it was under the leadership of AI guru Yann LeCun that Pytorch developed into a major alternative.
PyTorch uses autodifferentiation to make it possible for developers to introduce new behaviors into their neural networks, without having to restart their networks. This is possibly the most important innovation for major machine and deep learning frameworks implemented in Pytorch. Also, PyTorch threads can run on CPUs as well as GPUs, providing major efficiency gains in the process.
This book shows us how to make the simplicity and power of Pytorch work for a Python developer. The first application we learn about is how how to process images using CNNs, but new algorithms like GANs and and natural language processing algorithms are introduced as well. The book ends with a chapter on reinforcement learning and how put PyTorch application into production
What you will learn
- Processing, improving and recognizing image features
- Finding, interpreting and deriving insights from unstructured textual data
- Learning several varieties of General Adversarial Networks (GANs)
- Apply PyTorch implementations of reinforcement learning algorithms
- Put PyTorch projects through a production cycle
Who This Book Is For
Fluency in Python is assumed. Basic deep learning approaches should be familiar to the reader. This book is meant to be an introduction to PyTorch, and tries to show the breadth of applications PyTorch can be put to.
商品描述(中文翻譯)
**開發影像分析應用程式、基於GAN的網路、強化學習演算法及文本工程例程,使用Deep Learning PyTorch應用程式**
#### 主要特點
- 首本長度的PyTorch介紹書
- 涵蓋在PyTorch上可以編寫的所有應用範疇
- 專注於API,將演算法視為次要
#### 書籍描述
深度學習可能是當今應用計算中增長最快但也是最複雜的領域。主導深度學習API生態系的兩大框架是Google的TensorFlow和Facebook的PyTorch。PyTorch源自用Lua編寫的開源Torch框架,在AI大師Yann LeCun的領導下,PyTorch發展成為一個主要的替代方案。
PyTorch使用自動微分技術,使開發者能夠在不重新啟動網路的情況下,為其神經網路引入新行為。這可能是PyTorch實現的主要機器學習和深度學習框架中最重要的創新。此外,PyTorch執行緒可以在CPU和GPU上運行,從而在過程中提供顯著的效率提升。
本書展示了如何讓PyTorch的簡單性和強大功能為Python開發者所用。我們學習的第一個應用是如何使用CNN處理影像,但也介紹了GAN和自然語言處理演算法等新演算法。本書最後一章講述了強化學習以及如何將PyTorch應用程式投入生產。
#### 你將學到的內容
- 處理、改善和識別影像特徵
- 從非結構化文本數據中尋找、解釋和推導見解
- 學習多種通用對抗網路(GAN)的變體
- 應用PyTorch實現的強化學習演算法
- 將PyTorch專案經過生產週期
#### 本書適合誰
假設讀者具備Python流利度,基本的深度學習方法應該是熟悉的。本書旨在作為PyTorch的入門介紹,並試圖展示PyTorch可以應用的廣泛範疇。