Hands-On Graph Analytics with Neo4j (Paperback)

Scifo, Estelle

買這商品的人也買了...

相關主題

商品描述

Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning

Key Features

  • Get up and running with graph analytics with the help of real-world examples
  • Explore various use cases such as fraud detection, graph-based search, and recommendation systems
  • Get to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scaling

Book Description

Neo4j is a graph database that includes plugins to run complex graph algorithms.

The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You'll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You'll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You'll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you'll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you'll get to grips with structuring a web application for production using Neo4j.

By the end of this book, you'll not only be able to harness the power of graphs to handle a broad range of problem areas, but you'll also have learned how to use Neo4j efficiently to identify complex relationships in your data.

What you will learn

  • Become well-versed with Neo4j graph database building blocks, nodes, and relationships
  • Discover how to create, update, and delete nodes and relationships using Cypher querying
  • Use graphs to improve web search and recommendations
  • Understand graph algorithms such as pathfinding, spatial search, centrality, and community detection
  • Find out different steps to integrate graphs in a normal machine learning pipeline
  • Formulate a link prediction problem in the context of machine learning
  • Implement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphs

Who this book is for

This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.

商品描述(中文翻譯)

**發現如何使用 Neo4j 透過圖形建模、圖形演算法和機器學習來識別複雜且大型的圖形數據集中的關係**

**主要特點**

- 透過真實案例快速上手圖形分析
- 探索各種使用案例,如詐騙檢測、基於圖形的搜索和推薦系統
- 透過範例深入了解 Graph Data Science 庫,並在雲端使用 Neo4j 以有效擴展應用程式

**書籍描述**

Neo4j 是一個圖形數據庫,包含執行複雜圖形演算法的插件。

本書從圖形分析的基本概念、Cypher 查詢語言和圖形架構組件的介紹開始,幫助您理解為何企業開始在其組織內部採用圖形分析。您將學會如何實施 Neo4j 演算法和技術,並探索各種圖形分析方法,以揭示數據中的複雜關係。您將能夠實施針對不同領域的圖形分析,如詐騙檢測、基於圖形的搜索、推薦系統、社交網絡和數據管理。您還將學習如何在圖形數據庫中存儲數據並從中提取有價值的見解。隨著您對這些技術的熟悉,您將發現圖形機器學習,以解決從簡單到複雜的挑戰,並了解如何在機器學習模型中使用圖形數據,以根據您的數據進行預測。最後,您將學會如何使用 Neo4j 組織生產環境中的網頁應用程式。

在本書結束時,您不僅能夠利用圖形的力量來處理廣泛的問題領域,還將學會如何有效地使用 Neo4j 來識別數據中的複雜關係。

**您將學到的內容**

- 熟悉 Neo4j 圖形數據庫的基本構建塊、節點和關係
- 探索如何使用 Cypher 查詢創建、更新和刪除節點和關係
- 使用圖形改善網頁搜索和推薦
- 理解圖形演算法,如路徑尋找、空間搜索、中心性和社群檢測
- 瞭解在正常機器學習流程中整合圖形的不同步驟
- 在機器學習的背景下制定鏈接預測問題
- 實施圖形嵌入演算法,如 DeepWalk,並在 Neo4j 圖形中使用它們

**本書適合誰**

本書適合數據分析師、商業分析師、圖形分析師和數據庫開發人員,這些人希望存儲和處理圖形數據以揭示關鍵數據見解。本書也將吸引希望構建智能圖形應用程式以滿足不同領域需求的數據科學家。需要具備一些 Neo4j 的經驗。

作者簡介

Estelle Scifo possesses over 7 years' experience as a data scientist, after receiving her PhD from the Laboratoire de l'Accélérateur Linéaire, Orsay (affiliated to CERN in Geneva). As a Neo4j certified professional, she uses graph databases on a daily basis and takes full advantage of its features to build efficient machine learning models out of this data. In addition, she is also a data science mentor to guide newcomers into the field. Her domain expertise and deep insight into the perspective of the beginner's needs make her an excellent teacher.

作者簡介(中文翻譯)

Estelle Scifo 擁有超過 7 年的資料科學家經驗,並在 Laboratoire de l'Accélérateur Linéaire, Orsay(隸屬於日內瓦的 CERN)獲得博士學位。作為 Neo4j 認證專業人士,她每天使用圖形資料庫,充分利用其功能來從這些資料中構建高效的機器學習模型。此外,她還擔任資料科學導師,指導新進者進入這個領域。她的領域專業知識和對初學者需求的深刻洞察使她成為一位出色的教師。

目錄大綱

  1. Graph Databases
  2. The Cypher Query Language
  3. Empowering Your Business with Pure Cypher
  4. The Graph Data Science Library and Path Finding
  5. Spatial Data
  6. Node Importance
  7. Community Detection and Similarity Measures
  8. Using Graph-based Features in Machine Learning
  9. Predicting Relationships
  10. Graph embedding - from Graphs to Matrices
  11. Using Neo4j in Your Web Application
  12. Neo4j at Scale

目錄大綱(中文翻譯)

1. 圖形資料庫
2. Cypher 查詢語言
3. 以純 Cypher 賦能您的業務
4. 圖形資料科學庫與路徑尋找
5. 空間資料
6. 節點重要性
7. 社群偵測與相似性度量
8. 在機器學習中使用基於圖形的特徵
9. 預測關係
10. 圖形嵌入 - 從圖形到矩陣
11. 在您的網頁應用程式中使用 Neo4j
12. 大規模使用 Neo4j