Digital Health for Predictive, Preventive, Personalised and Participatory Medicine
暫譯: 數位健康:預測、預防、個人化與參與式醫學
Chaari, Lotfi
- 出版商: Springer
- 出版日期: 2019-07-11
- 售價: $6,250
- 貴賓價: 9.5 折 $5,938
- 語言: 英文
- 頁數: 88
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030117995
- ISBN-13: 9783030117993
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This collection, entitled Digital Health for Predictive, Preventive, Personalized and Participatory Medicine contains the proceedings of the first International conference on digital healthtechnologies (ICDHT 2018). Ten recent contributions in the fields of Artificial Intelligence (AI) and machine learning, Internet of Things (IoT) and data analysis, all applied to digital health. This collection enables researchers to learn about recent advances in the above mentioned fields. It brings a technological viewpoint of P4 medicine. Readers will discover how advanced Information Technology (IT) tools can be used for healthcare. For instance, the use of connected objects to monitor physiological parameters is discussed. Moreover, even if compressed sensing is nowadays a common acquisition technique, its use for IoT is presented in this collection through one of the pioneer works in the field.
In addition, the use of AI for epileptic seizure detection is also discussed as being one of the major concerns of predictive medicine both in industrialized and low-income countries.
This work is edited by Prof. Lotfi Chaari, professor at the University of Sfax, and previously at the University of Toulouse. This work comes after more than ten years of expertise in the biomedical signal and image processing field.
商品描述(中文翻譯)
這本名為《數位健康:預測、預防、個人化與參與式醫學》的合集包含了第一屆國際數位健康技術會議(ICDHT 2018)的會議論文。該合集收錄了十篇近期在人工智慧(AI)和機器學習、物聯網(IoT)及數據分析等領域的貢獻,這些技術均應用於數位健康。這本合集使研究人員能夠了解上述領域的最新進展,並提供了P4醫學的技術觀點。讀者將發現先進的資訊科技(IT)工具如何應用於醫療保健。例如,文中討論了使用連接物件來監測生理參數的方式。此外,即使壓縮感測技術如今已成為一種常見的獲取技術,這本合集也通過該領域的一項先驅工作介紹了其在物聯網中的應用。
此外,文中還討論了人工智慧在癲癇發作檢測中的應用,這是預測醫學在工業化國家和低收入國家中的主要關注點之一。
本書由Sfax大學的Lotfi Chaari教授編輯,他曾任教於圖盧茲大學。這本書是在生物醫學信號和影像處理領域超過十年的專業經驗之後出版的。
作者簡介
Chapter 1: L. Chaari: Introduction
Chapter 2: J. Diaz. Ricardo, J. M. L. Veronica and B. M. Alejandra: Artificial Neuroplasticity by Deep Learning Reconstruc-tion Signal to Reconnect Motion signal for Spinal Cord.
Chapter 3: M. Kamali and A. Cherif: Improved Massive MIMO Cylindrical Adaptive Antenna Array.
Chapter 4: I. Slim, H. Bettaieb, A. Ben Abdallah, I Bhouri and M. H. Bedoui: Multifractal analysis with lacunarity for microcalcifications segmentation.
Chapter 5: D. Ben Ali, I. Ghorbel, N. Gharbi, K. Belhaj Hmida and F. Gargouri: Consolidated Clinical Document Architecture: Analysis and Evaluation to Support the Interoperability of Tunisian Health Systems.
Chapter 6: I. Ghorbel, W. Gharbi, L. Chaari and A. Benazza: Bayesian compressed sensing for IoT: application to EEG recording.
Chapter 7: C. Karray, N. Gharbi and M. Jmaiel: Patients Stratification in Imbalanced Datasets: A Roadmap.
Chapter 8: I. Bani, B. Akrout and W. Mahdi: Real-Time Driver Fatigue Monitoring with
Dynamic Bayesian Network Model.
Chapter 9: B. Bouaziz, L. Chaari, H. Batatia and A. Quintero-Rincon: Epileptic seizure detection using a Convolutional Neural Network.
Chapter 10: A. Quintero-Rincon, C. D'Giano and H. Batatia: Seizure onset detection in EEG signals based on entropy from generalized Gaussian PDF modeling and ensemble bagging classifier.
作者簡介(中文翻譯)
洛夫提·查阿里教授,曾任薩法克斯大學教授,並曾在圖盧茲大學任教。這項工作是在醫療生物醫學信號和影像處理領域超過十年的專業經驗後完成的。
第一章: L. Chaari: 導論
第二章: J. Diaz、Ricardo、J. M. L. Veronica 和 B. M. Alejandra: 透過深度學習重建信號的人工神經可塑性,以重新連接脊髓運動信號。
第三章: M. Kamali 和 A. Cherif: 改進的巨型 MIMO 圓柱形自適應天線陣列。
第四章: I. Slim、H. Bettaieb、A. Ben Abdallah、I. Bhouri 和 M. H. Bedoui: 具有空隙度的多重分形分析,用於微鈣化的分割。
第五章: D. Ben Ali、I. Ghorbel、N. Gharbi、K. Belhaj Hmida 和 F. Gargouri: 整合臨床文檔架構:分析與評估以支持突尼西亞健康系統的互操作性。
第六章: I. Ghorbel、W. Gharbi、L. Chaari 和 A. Benazza: 物聯網的貝葉斯壓縮感知:應用於腦電圖記錄。
第七章: C. Karray、N. Gharbi 和 M. Jmaiel: 不平衡數據集中的患者分層:一個路線圖。
第八章: I. Bani、B. Akrout 和 W. Mahdi: 實時駕駛員疲勞監測
動態貝葉斯網絡模型。
第九章: B. Bouaziz、L. Chaari、H. Batatia 和 A. Quintero-Rincon: 使用卷積神經網絡進行癲癇發作檢測。
第十章: A. Quintero-Rincon、C. D'Giano 和 H. Batatia: 基於廣義高斯概率密度函數建模和集成袋裝分類器的腦電圖信號癲癇發作起始檢測。