Inpainting and Denoising Challenges
暫譯: 修補與去噪挑戰

Escalera, Sergio, Ayache, Stephane, Wan, Jun

  • 出版商: Springer
  • 出版日期: 2019-10-17
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 144
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030256138
  • ISBN-13: 9783030256135
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting.

Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration.

This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.

商品描述(中文翻譯)

處理機器學習和計算機視覺中缺失或不完整數據的問題在許多應用中都會出現。最近的策略利用生成模型來填補缺失或損壞的數據。使用深度生成模型的計算機視覺進展已在圖像/視頻處理中找到應用,例如去噪、修復、超解析度或圖像修補。

《圖像修補與去噪挑戰》包含了最近在圖像和視頻修補任務方面的努力。這包括在ChaLearn Looking at People修補和去噪挑戰中獲勝的解決方案:人體姿勢恢復、視頻去字幕和指紋修復。

本卷首先對圖像去噪進行廣泛的回顧,回溯並比較各種方法,從先驅的信號處理方法到使用稀疏和低秩模型的機器學習方法,以及最近的自編碼器及其變體的深度學習架構。接下來的章節展示了來自挑戰的結果,包括WCCI和ECML 2018的三個競賽任務。參賽者提交的最佳方法被描述,顯示出有趣的貢獻和創新的方法。最後兩章提出了新穎的貢獻,並突顯了受益於圖像/視頻修補的新應用。