Fuzzy Transforms for Image Processing and Data Analysis: Core Concepts, Processes and Applications
暫譯: 模糊轉換在影像處理與數據分析中的應用:核心概念、流程與應用

Di Martino, Ferdinando, Sessa, Salvatore

  • 出版商: Springer
  • 出版日期: 2021-04-23
  • 售價: $6,740
  • 貴賓價: 9.5$6,403
  • 語言: 英文
  • 頁數: 217
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030446158
  • ISBN-13: 9783030446154
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book analyzes techniques that use the direct and inverse fuzzy transform for image processing and data analysis. The book is divided into two parts, the first of which describes methods and techniques that use the bi-dimensional fuzzy transform method in image analysis. In turn, the second describes approaches that use the multidimensional fuzzy transform method in data analysis.

An F-transform in one variable is defined as an operator which transforms a continuous function f on the real interval [a, b] in an n-dimensional vector by using n-assigned fuzzy sets A1, ..., An which constitute a fuzzy partition of [a, b]. Then, an inverse F-transform is defined in order to convert the n-dimensional vector output in a continuous function that equals f up to an arbitrary quantity ε. We may limit this concept to the finite case by defining the discrete F-transform of a function f in one variable, even if it is not known a priori. A simple extension of this concept to functions in two variables allows it to be used for the coding/decoding and processing of images. Moreover, an extended version with multidimensional functions can be used to address a host of topics in data analysis, including the analysis of large and very large datasets.

Over the past decade, many researchers have proposed applications of fuzzy transform techniques for various image processing topics, such as image coding/decoding, image reduction, image segmentation, image watermarking and image fusion; and for such data analysis problems as regression analysis, classification, association rule extraction, time series analysis, forecasting, and spatial data analysis.

The robustness, ease of use, and low computational complexity of fuzzy transforms make them a powerful fuzzy approximation tool suitable for many computer science applications. This book presents methods and techniques based on the use of fuzzy transforms in various applications of image processing and data analysis, including image segmentation, image tamper detection, forecasting, and classification, highlighting the benefits they offer compared with traditional methods. Emphasis is placed on applications of fuzzy transforms to innovative problems, such as massive data mining, and image and video security in social networks based on the application of advanced fragile watermarking systems.

This book is aimed at researchers, students, computer scientists and IT developers to acquire the knowledge and skills necessary to apply and implement fuzzy transforms-based techniques in image and data analysis applications.

商品描述(中文翻譯)

本書分析了使用直接和反向模糊變換技術進行影像處理和數據分析的方法。本書分為兩個部分,第一部分描述了在影像分析中使用二維模糊變換方法的技術和方法。第二部分則描述了在數據分析中使用多維模糊變換方法的途徑。

一維的 F-transform 定義為一種運算子,它通過使用 n 個指定的模糊集合 A1、...、An,將定義在實數區間 [a, b] 上的連續函數 f 轉換為 n 維向量,這些模糊集合構成了 [a, b] 的模糊劃分。然後,定義反向 F-transform 以將 n 維向量輸出轉換為一個連續函數,該函數在任意量 ε 的範圍內等於 f。我們可以通過定義一個一維函數 f 的離散 F-transform 來將這一概念限制於有限情況,即使它不是事先已知的。將這一概念簡單擴展到二維函數,使其可以用於影像的編碼/解碼和處理。此外,擴展版本的多維函數可以用於解決數據分析中的許多主題,包括大型和超大型數據集的分析。

在過去十年中,許多研究人員提出了模糊變換技術在各種影像處理主題中的應用,例如影像編碼/解碼、影像縮減、影像分割、影像水印和影像融合;以及在數據分析問題中的應用,如回歸分析、分類、關聯規則提取、時間序列分析、預測和空間數據分析。

模糊變換的穩健性、易用性和低計算複雜度使其成為適合許多計算機科學應用的強大模糊近似工具。本書介紹了基於模糊變換在各種影像處理和數據分析應用中的方法和技術,包括影像分割、影像篡改檢測、預測和分類,並強調了與傳統方法相比所提供的優勢。重點放在模糊變換應用於創新問題上,例如大規模數據挖掘,以及基於先進脆弱水印系統的社交網絡中的影像和視頻安全。

本書旨在幫助研究人員、學生、計算機科學家和 IT 開發人員獲得應用和實施基於模糊變換的技術在影像和數據分析應用中所需的知識和技能。

作者簡介

Dr. Ferdinando Di Martino is a University Researcher Scientist in Computer Science at the Department of Architecture, University of Naples Federico II, Italy. Dr. Sessa Salvatore is a Full Professor of Computer Science at the same institution.


作者簡介(中文翻譯)

費爾丁南多·迪·馬爾蒂諾博士是義大利那不勒斯費德里科二世大學建築系的計算機科學大學研究科學家。薩爾瓦多·塞薩博士是同一機構的計算機科學正教授。