Data-Driven Evolutionary Optimization: Integrating Evolutionary Computation, Machine Learning and Data Science
暫譯: 數據驅動的進化優化:整合進化計算、機器學習與數據科學
Jin, Yaochu, Wang, Handing, Sun, Chaoli
- 出版商: Springer
- 出版日期: 2021-06-29
- 售價: $7,920
- 貴賓價: 9.5 折 $7,524
- 語言: 英文
- 頁數: 393
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030746399
- ISBN-13: 9783030746391
-
相關分類:
Machine Learning、Data Science
-
相關翻譯:
數據驅動的進化優化 (簡中版)
相關主題
商品描述
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.
This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
商品描述(中文翻譯)
本書旨在為研究人員和實務工作者提供服務,涵蓋了精心挑選但範圍廣泛的優化、機器學習和元啟發式演算法主題。由在工業應用方面極具經驗的世界領先學術研究者撰寫,這本自成一體的書籍是同類書籍中的首創,提供了全面的背景知識,特別是實用指導方針和最先進的技術。新演算法經過仔細解釋,並以偽代碼或流程圖進一步闡述,完整的可運行源代碼也免費提供。
接下來,書中介紹了各種數據驅動的單目標和多目標優化演算法,這些演算法無縫整合了現代機器學習技術,如深度學習和遷移學習,與進化演算法和群體智慧演算法。數據驅動優化的應用範圍包括氣動設計、工業過程優化以及深度神經網絡架構搜索等。