Thinking Data Science: A Data Science Practitioner's Guidebook
暫譯: 思考數據科學:數據科學實務者指南
Sarang, Poornachandra
- 出版商: Springer
- 出版日期: 2023-03-02
- 售價: $2,740
- 貴賓價: 9.5 折 $2,603
- 語言: 英文
- 頁數: 240
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031023625
- ISBN-13: 9783031023620
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single "cheat sheet".
The challenge for data science is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to process such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the correct algorithms and appropriate architectures, whether the data be small or big.
商品描述(中文翻譯)
這本關於機器學習專案的權威指南解答了許多有志或經驗豐富的資料科學家常遇到的問題:在機器學習開發中,我該使用什麼技術?我應該使用 GOFAI、ANN/DNN 還是轉移學習?我可以依賴 AutoML 來進行模型開發嗎?如果客戶提供我數十億和數TB的數據來開發分析模型,我該怎麼辦?我該如何處理高頻動態數據集?這本書為實務工作者提供了一個整合整個資料科學過程的「備忘單」。
資料科學的挑戰在於從龐大的數據集中提取有意義的信息,以幫助企業制定更好的策略。許多機器學習算法和神經網絡都是為了處理這類數據集而設計的。對於資料科學家來說,選擇適合特定數據集的算法是一個艱鉅的決定。雖然這個問題沒有單一的答案,但採取系統化的問題解決方法是必要的。本書概念性地描述了各種機器學習算法,並定義/討論了選擇機器學習/深度學習模型的過程。本書的關鍵在於整合可用的算法和技術,以設計高效的機器學習模型。《思考資料科學》將幫助實務資料科學家、學者、研究人員和希望使用正確算法和適當架構來建立機器學習模型的學生,無論數據是小型還是大型。
作者簡介
Poornachandra Sarang, in his IT career spanning four decades, has been consulting large IT organizations on the design and architecture of systems using state-of-the-art technologies. He has authored several books covering a wide range of emerging technologies. Dr. Sarang is a Ph.D. advisor for Computer Science and Engineering and is on the thesis advisory committee for aspiring doctoral candidates. He has designed and delivered courses/curricula for universities at the postgraduate level, including courses and workshops on emerging technologies for industry. He is a known face at technical and research conferences delivering both keynote and technical talks.
作者簡介(中文翻譯)
Poornachandra Sarang 在其長達四十年的資訊科技職業生涯中,曾為大型資訊科技組織提供有關系統設計和架構的諮詢,使用最先進的技術。他撰寫了多本涵蓋各種新興技術的書籍。Sarang 博士是計算機科學與工程的博士生導師,並且是有志於攻讀博士學位的候選人的論文諮詢委員會成員。他為大學設計並提供研究生層級的課程/課程大綱,包括針對產業的新興技術課程和工作坊。他在技術和研究會議上是個知名的面孔,經常發表主題演講和技術演講。