Introduction to Hyperfunctions and Their Integral Transforms: An Applied and Computational Approach (Hardcover)
暫譯: 超函數及其積分變換導論:應用與計算方法 (精裝版)
Graf, Urs
- 出版商: Springer
- 出版日期: 2010-03-12
- 售價: $3,530
- 貴賓價: 9.5 折 $3,354
- 語言: 英文
- 頁數: 432
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3034604076
- ISBN-13: 9783034604079
海外代購書籍(需單獨結帳)
相關主題
商品描述
This textbook is about generalized functions and some of their integral tra- forms in one variable. It is based on the approach introduced by the Japanese mathematician Mikio Sato. We mention this because the term hyperfunction that Sato has given to his generalization of the concept of function is sometimes used today to denote generalized functions based on other approaches (distributions, Mikusinski s operators etc. ). I have written this book because I am delighted by the intuitive idea behind Sato s approach which uses the classical complex fu- tion theory to generalize the notion of function of a real variable. In my opinion, Sato swayofintroducingthegeneralizedconceptofafunctionislessabstractthan the one of Laurent Schwartz who de?nes his distributions as linear functionals on some space of test functions. On the other hand, I was quickly led to recognize that very few colleagues (mathematicians included) knew anything about Satos s approach. PerhapsSato andhis schoolis not entirelyblamelessfor this state of - fairs. For severaldecades no elementary textbook addressinga wider audience was available (at least in English). Zealots delighted by the appealing intuitive idea of the approach have probably found their enthusiasm rapidly diminished because of the adopted style of exposition and the highly ambitious abstract mathematical concepts used in the available books and articles. Fortunately, some years ago, I found Isac Imai s Book Applied Hyperfunction Theory which explains and applies Sato s hyperfunctions in a concrete, but nontrivial way, and thereby reveals their computational power."
商品描述(中文翻譯)
這本教科書是關於廣義函數及其在一個變數下的一些積分變換。它基於日本數學家佐藤幹夫(Mikio Sato)所提出的方法。我們提到這一點是因為佐藤對函數概念的廣義化所使用的術語「超函數」(hyperfunction),有時今天也用來指代基於其他方法(如分佈、Mikusinski 的運算子等)的廣義函數。我寫這本書是因為我對佐藤的方法背後的直觀理念感到興奮,該方法利用經典的複變函數理論來廣義化實變數的函數概念。在我看來,佐藤引入廣義函數概念的方式比洛朗·施瓦茨(Laurent Schwartz)定義的分佈作為某些測試函數空間上的線性泛函的方式更不抽象。另一方面,我很快意識到,幾乎沒有同事(包括數學家)對佐藤的方法有任何了解。或許佐藤及其學派對這種情況並不完全無辜。幾十年來,沒有針對更廣泛受眾的基礎教科書可用(至少在英語中是如此)。熱衷於這種直觀方法的狂熱者,可能因為所採用的表述風格和可用書籍及文章中使用的高度雄心勃勃的抽象數學概念而迅速減少了他們的熱情。幸運的是,幾年前,我找到了伊薩克·今井(Isac Imai)的《應用超函數理論》(Applied Hyperfunction Theory),該書以具體但不平凡的方式解釋並應用佐藤的超函數,從而揭示了它們的計算能力。