Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications (The International Series in Video Computing)
暫譯: 穩健的子空間估計與低秩優化:理論與應用(國際視頻計算系列)

Omar Oreifej, Mubarak Shah

  • 出版商: Springer
  • 出版日期: 2014-04-03
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 114
  • 裝訂: Hardcover
  • ISBN: 3319041835
  • ISBN-13: 9783319041834
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

商品描述(中文翻譯)

各種計算機視覺和機器學習的基本應用需要找到某個子空間的基底。這類應用的例子包括臉部檢測、運動估計和活動識別。由於矩陣秩優化數學的重大進展,最近對這個領域的興趣日益增加。有趣的是,穩健的子空間估計可以被表述為一個低秩優化問題,這可以通過使用增強拉格朗日乘數法等技術有效地解決。在本書中,作者討論了基於低秩優化的子空間估計和表示的基本公式及其擴展。通過最小化包含從圖像中提取的觀察值的矩陣的秩,作者展示了如何解決四個基本的計算機視覺問題,包括視頻去噪、背景減除、運動估計和活動識別。