Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects: FVCA 7, Berlin, June 2014 (Springer Proceedings in Mathematics & Statistics)
暫譯: 複雜應用的有限體積方法與理論方面第七卷:FVCA 7,柏林,2014年6月(施普林格數學與統計系列會議論文集)

  • 出版商: Springer
  • 出版日期: 2014-05-23
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 468
  • 裝訂: Hardcover
  • ISBN: 3319056832
  • ISBN-13: 9783319056838
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field.

 The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

商品描述(中文翻譯)

《第七屆「複雜應用的有限體積」會議論文集第一卷》(柏林,2014年6月)涵蓋了收斂性和穩定性分析等主題,以及從與物理原則相容性的角度對這些方法的研究。該卷匯集了專題邀請論文,以及來自國際領先研究者的經過審查的貢獻,這些研究者在有限體積及相關方法的分析領域中具有重要地位。總體而言,該卷提供了該領域最新技術的相當全面的概述。

有限體積方法及其各種形式是一種基於基本物理原則(守恆)的偏微分方程的空間離散化技術。近幾十年來,該方法的理論理解取得了顯著的成功。許多有限體積方法保留了進一步的定性或漸近性質,包括最大原則、耗散性、自由能的單調衰減和漸近穩定性。由於這些性質,有限體積方法屬於更廣泛的相容離散化方法類別,這些方法在離散層面上保留了連續問題的定性特性。這種對偏微分方程離散化的結構性方法對於多物理場和多尺度應用變得尤為重要。

從事數值分析、科學計算及相關領域(如偏微分方程)的研究人員、博士及碩士生,以及從事數值建模和模擬的工程師都會發現這一卷對他們非常有用。