Forward Error Correction Based On Algebraic-Geometric Theory (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 基於代數幾何理論的前向錯誤更正 (SpringerBriefs in Electrical and Computer Engineering)

Jafar A. Alzubi

  • 出版商: Springer
  • 出版日期: 2014-06-25
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 84
  • 裝訂: Paperback
  • ISBN: 3319082922
  • ISBN-13: 9783319082929
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

商品描述(中文翻譯)

本書涵蓋了從 Hermitian 曲線設計、建構和實現代數幾何碼的過程。使用 Matlab 模擬代數幾何碼和 Reed-Solomon 碼,並比較它們在不同調變方案下的位元錯誤率,這些模擬是在加性白高斯噪聲通道模型上進行的。首次呈現了使用正交振幅調變(16QAM 和 64QAM)的代數幾何碼位元錯誤率性能的模擬結果,顯示其在各種碼率和通道模型下均優於 Reed-Solomon 碼。本書提出了代數幾何區塊渦輪碼(algebraic-geometric block turbo codes)。同時也展示了模擬結果,顯示在使用代數幾何碼和 Chase-Pyndiah 演算法的情況下,雖然系統複雜度較高,但位元錯誤率性能有所改善。本書還提出了代數幾何不規則區塊渦輪碼(AG-IBTC),以降低系統複雜度。AG-IBTC 的模擬結果首次被呈現。