Statistical Analysis for High-Dimensional Data(Hardcover)
- 出版商: Springer
- 出版日期: 2016-02-17
- 售價: $6,640
- 貴賓價: 9.5 折 $6,308
- 語言: 英文
- 頁數: 306
- 裝訂: Hardcover
- ISBN: 3319270974
- ISBN-13: 9783319270975
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.
The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.
Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.