A Group Theoretic Approach to Quantum Information
暫譯: 量子資訊的群論方法

Masahito Hayashi

買這商品的人也買了...

相關主題

商品描述

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory. 

商品描述(中文翻譯)

這本書是第一本從群對稱的角度探討量子資訊的書籍。量子系統具有群對稱結構。這種結構使得系統性地處理量子資訊處理成為可能。然而,儘管存在許多關於群表示的教科書,卻沒有其他教科書專注於量子資訊的群對稱。在對量子資訊進行數學準備之後,本書討論了量子糾纏及其通過群對稱進行的量化。群對稱大幅簡化了幾個糾纏度量的計算,儘管這些計算通常非常難以處理。本書處理了最佳資訊過程,包括量子狀態估計、量子狀態克隆、群作用的估計和量子通道等。通常,在沒有這些主題的漸近設定下,推導最佳量子資訊過程是非常困難的。然而,群對稱允許在不假設漸近設定的情況下推導這些最佳解。接下來,本書探討了具有Weyl-Heisenberg群對稱結構的量子錯誤更正碼。這種結構使得系統性地理解量子錯誤更正碼成為可能。最後,本書專注於使用群SU(d)的量子通用資訊協議。這個主題可以被視為Csiszar-Korner的通用編碼理論的量子版本,並使用類型方法。關於群表示所需的數學知識已在伴隨書籍《量子理論的群表示》中進行總結。