Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications: Cetraro, Italy 2015 (Lecture Notes in Mathematics)
暫譯: 矩陣計算中的隱藏結構利用:演算法與應用:意大利切特拉羅 2015(數學講義筆記)
Michele Benzi
- 出版商: Springer
- 出版日期: 2017-02-02
- 售價: $3,750
- 貴賓價: 9.5 折 $3,563
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 331949886X
- ISBN-13: 9783319498867
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory.
Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices.
The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.
商品描述(中文翻譯)
專注於特殊矩陣及在某種意義上「接近」結構化矩陣的矩陣,本書涵蓋了數值線性代數中當前感興趣的廣泛主題。利用這些不那麼明顯的結構性質在設計高效數值方法時可能具有重要意義,例如針對低秩區塊結構矩陣、衰減矩陣和結構化張量計算的演算法。應用範圍從量子化學到排隊理論。
結構化矩陣在應用中經常出現。例子包括帶狀矩陣和稀疏矩陣、Toeplitz 型矩陣,以及具有半可分或準可分結構的矩陣,還有哈密頓矩陣和辛矩陣。相關文獻龐大,並且已經開發出許多高效的演算法來解決涉及這些矩陣的問題。
本書的內容源自於2015年6月在意大利切特拉羅舉辦的C.I.M.E.課程,旨在向年輕研究人員介紹這一快速發展的領域,並利用五位具有不同理論和應用視角的領先講師的專業知識。